摘要: 特征选择与融合是提升脑电信号情绪解码精度的重要手段之一。然而,当前脑电情绪解码中的特征选择方法常忽略了脑电信号内在数据结构的隐含信息。该文提出一种基于近邻传播聚类的多任务特征融合方法,通过L2,1L2,1范数约束实现稀疏特征选择,同时利用图拉普拉斯正则化保持不同子类间的潜在关系。该算法在不揭示真实样本标签的情况下,在子任务空间有效融合脑网络空间拓扑结构信息和微分熵信息,为高精度脑电信号情绪解码提供具有更高情绪表征能力的特征。DEAP和SEED数据集以及本实验室数据集的分析结果表明,该文提出的方法能显著提高脑电情绪解码的精度。
- 关键词:
- 情感脑机接口 /
- 脑电情绪识别 /
- 脑网络 /
- 微分熵 /
- 近邻传播聚类 /
- 图拉普拉斯正则 /
- 多任务特征融合 /
- 稀疏特征选择
情感脑机接口是一种对人的情绪进行识别和调控的脑机接口[1],在人机交互领域中有着重要应用。在脑电 (electroencephalogram, EEG),心电、肌电和皮肤温度等生理信号中,基于EEG的情绪识别具有时间分辨率高、成本低廉、设备便携性好、操作简单的优势,近年来得到广泛关注[2]。
订阅专栏 解锁全文
2964

被折叠的 条评论
为什么被折叠?



