摘 要 近年来,工业互联网获得了飞速的发展.但是和传统互联网一样,工业互联网也面临着大量的网络攻击威胁和敏感信息泄露风险.而流量识别技术,特别是细粒度的应用动作识别技术,可以辅助网络管理者对异常行为进行检测和及早发现隐私泄露风险,保障工业互联网的安全.然而,现有动作识别技术依赖对流量数据中动作边界的预先分割,无法识别无边界的动作,难以应用于实际场景.为解决这一问题,提出一种无边界动作识别算法:首先构建基于自注意力机制的包级识别模型,对数据包进行动作分类;然后提出动作聚合算法,从数据包的分类结果中聚合出动作序列;最后,建立2种新指标来衡量识别结果的好坏.为验证算法的可行性,以微信为实例进行实验,结果表明该模型能够取得最高超过90%的序列识别精度.这一研究成果将有望极大推动应用动作识别技术的实用化.
关键词 工业互联网;流量分类;动作识别;深度学习;自注意力
工业互联网是近年来工业制造与互联网、大数据、云计算、人工智能等技术不断发展并走向深度融合的产物,是工业生产的重要发展趋势.我国于2013年提出“中国制造2025”战略,全面推动工业制造走向数字化、智能化[1].然而,工业互联网同时也是网络攻击的重要目标,面临着众多的安全威胁.《工业互联网平台安全白皮书(2020)》指出[2],我国许多工业
订阅专栏 解锁全文

1984

被折叠的 条评论
为什么被折叠?



