基于多尺度标签传播的小样本图像分类

摘 要 在小样本条件下,由于低数据问题,即标记数据较少且难以收集,采用传统的深度学习很难训练出一个好的分类器.最近的研究中,基于低维局部信息度量方法和标签传播网络(transductive propagation network, TPN)算法取得了较好的分类效果,并且局部信息可以很好地度量特征与特征之间的关系,但是低数据问题依然存在.为了解决低数据问题,提出基于多尺度的标签传播网络(multi-scale label propagation network, MSLPN)方法,其核心思想在于利用多尺度生成器生成多个尺度的图像特征,通过关系度量模块获得多个不同尺度特征下的样本相似性得分,并通过集成不同尺度的相似性得分获得分类结果,具体地,方法首先通过多尺度生成器生成不同尺度的图像特征,然后利用多尺度信息的相似性得分进行标签传播,最后通过多尺度标签传播结果计算获得分类结果.与TPN相比,在数据集miniImageNet上,5-way 1-shot和5-way 5-shot设置中的分类准确率分别提高了2.77%和4.02%;在数据集tieredImageNet上,5-way 1-shot和5-way 5-shot设置中分类准确率分别提高了1.16%和1.27%.实验结果表明,利用多尺度特征信息可有效提高分类准确率.

关键词 小样本学习;度量学习;多尺度特征;特征增

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗思付之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值