摘 要 有效的融合算子可提升多视图分类方法的性能.随着视图个数增多,现有融合算子面临2方面挑战:1)表达能力强的融合算子得到的融合向量维度呈指数增加,而融合维度不变的融合算子的表达能力较弱;2)现有融合算子往往一次作用于全部视图,这种融合策略建模视图间的关系较为困难.为解决这些问题,受多粒度启发,提出一种多粒度融合的超多视图分类方法.首先,使用1个融合算子建模任意视图对之间的关系;然后,基于成对关系结果,使用1个融合算子建模每个视图与其他全部视图的关系;最后,基于每个视图与其他全部视图的关系结果,使用1个融合算子建模全部视图间的关系.4个大规模数据集上的实验结果表明:多粒度融合的超多视图分类方法的性能统计上优于比较方法,这表明多粒度由易到难建模视图特征间关系的策略确实可提升多视图分类方法的性能.
关键词 超多视图;融合;分类;多粒度;多层次
迅猛发展的表征学习技术和特征提取技术使得研究人员可以方便、容易地提取到数据不同视角的特征表示,进而可以更全面地认识数据、分析数据和管理数据.例如1张图片可以用尺度不变特征转换(scale invariant feature transform, SIFT)、局部二值模式(local binary pattern, LBP)、方向梯度直方图(histogram of direction gradient, HOG)等不同类
订阅专栏 解锁全文
890

被折叠的 条评论
为什么被折叠?



