摘 要
通过分析数据中心算力资源和热力能流的耦合机制与潜在影响,建立算力-能量融合流模型。以此模型为基础,构建基线控制、非协同控制和协同控制这3类典型数据中心能效控制策略。通过对3种控制策略在不同仿真场景下的模拟,分析能效优化结果的关键影响因素。最后,定义算力-能效指数作为数据中心算力分布与热力效应耦合程度的衡量标准,并阐述如何量化协同控制策略的潜在影响。
0 1
概 述
数据中心由信息系统和配套的基础设施组成,配套基础设施提供电力、暖通等资源环境,为信息系统提供支撑。为确保算力服务质量,信息系统可通过准入控制和负载平衡等机制实现算力资源与运算负载的动态预配。因此,需考虑由运算负载变化引发的能耗需求变化[1]。随着云计算、大数据、人工智能、元宇宙等信息技术的快速发展和产业数字化转型,数据中心向高功率密度方向演进的趋势日渐显著[2]。预计到2025年,全国数据中心用电量将达1 200亿 kWh,二氧化碳排放总量达10 000万t。针对高算力需求、高功率密度的数据中心场景,建立能效优化方案意义显著[3-5]。
本文将数据中心视为信息物理系统(Cyber Physical System,CPS)的应用场景,重点关注能效优化问题&
订阅专栏 解锁全文
966

被折叠的 条评论
为什么被折叠?



