摘 要
随着5G网络的完善和5G流量的快速增长,如何满足网络连接的多样化需求,提升客户感知保障能力,成为网络运营智能化的关键点。介绍了某省联通在无线网络智能化、潜在贬损用户识别与感知提升方面所做的探索与实践,通过整合XDR话单和专业网管等多源数据,引入熵权法、分层二元评分法等科学算法模型,结合用户体验回访结果不断迭代优化算法,实现了对潜在贬损用户的有效识别,同时在感知驱动网络问题闭环解决方面也取得了较好的效果。
0 1
无线网络智能化背景
随着中国电信和中国联通(下称“电联”)4G共建共享的深入和5G网络的日益完善,现网3G/4G/5G多网共存,受多频段/多站型组合、电联一张网整合、多厂家协同等影响,移动网络优化与客户感知保障难度日益增加。同时,网络智能化已经成为电信运营商网络发展的战略目标,三大运营商均面向2025年L4目标,积极研发和应用AI/网络大模型、内生智能等前沿技术,移动网络自动化与智能化成为运营商数字化转型的关键。
充分挖掘现有多源数据、引入算法模型,结合现网不断迭代的优化算法,识别潜在贬损用户,达到以客户感知驱动建、维、优问题闭环解决,不仅是运营商优先要提升的能力,也是目前移动网络客户感知提升的迫切需求。
0 2
潜在贬损模型助力客户感知提升
2.1 贬损模型原理
当用户感知体验变差时,会增加投诉和贬低运营商网络的情况。如何提前识别用户感知体验差成为迫切需要解决的问题。以用户感知为中心的网络优化核心是通过精准的用户感知画像,区分出潜在贬损用户,以潜在贬损用户为抓手,完成问题汇聚识别并开展问题整治,主动提升网络质量和用户满意度(见图1)。

图1 潜在投诉和贬损用户模型
为更好地衡量同一个业务内不同指标之间的权重,采用业界比较科学的熵权法进行权重划分。根据信息论中信息熵的定义,一组数据的信息熵可由式(1)来表示:
Ej=log2

×

最低0.47元/天 解锁文章
1350

被折叠的 条评论
为什么被折叠?



