摘 要
当前室分小区隐性故障排查主要依赖人工巡检,存在现场测试排查周期长、对人工经验依赖严重、用户感知差等问题。提出基于多策略融合的室分小区隐性故障发现方法,利用8种KPI指标,使用Prophet算法确定动态阈值,通过研究指标重要性调整策略和修正非连续异常值策略相融合的多策略故障诊断,实现对室分隐性故障的快速定位。根据上述方法构建室分健康监控体系,辅助运维人员快速定位与修复隐性故障,提升用户感知。
0 1
概 述
随着移动通信网络的发展规模越来越大,相应的无线网络结构也越来越复杂。室内信号分布系统即室分系统能够将基站信号均匀分布在室内每个区域,进而改善建筑物内的移动通信环境[1]。室分故障的传统排查方法主要依赖人工排查和常规网管系统,且只能检测小区显性故障,而对于隐性故障的排查[2]主要通过室分巡检、网管告警、用户投诉3种方式,存在人工成本高、用户感知耦合性低、网络性能定位及时性差等问题。
本文利用室分无线小区网络故障的海量数据,以小时为时间单位选取影响室分小区隐性故障的关键指标,预测小区小时级指标趋势及动态区间,准确快速判断室分故障,辅助算法和业务人员进行决策支撑,提升室分无线小区隐性故障智能排查特征构建的质量与效率。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



