【摘 要】面向6G多样化场景下对高性能和低复杂度的传输需求,通过将AI架构引入无线传输收发方案的联合优化,打破基于模块化物理层设计方法和传统信息论的局限,一种基于AI的端到端语义编码传输方案被提出。首先,为了克服未知衰落信道下无法通过反向传播联合训练发射机的问题,设计了一种基于CGAN的两子网架构及分阶段训练方法,有效消除衰落信道的影响。其次,进一步提出了语义信道联合编码的系统架构,在端到端的联合优化方面具有优势。仿真结果表明,所提方案通过对语义编码和传输的联合优化提升了系统性能,并适用于实际通信中信道未知场景,具备灵活性、智能性和高效性。
【关键词】端到端传输;信源信道联合编码;智能通信;语义通信
0 引言
面向第六代无线通信(6G, 6th Generation Wireless Systems)实现万物互联的智能愿景,人工智能(AI, Artificial Intelligence)在无线通信中的广泛应用已成为研究热点,是推动下一代通信发展的主要动力之一。伴随着日益增长的通信需求,以概率度量信息量,以误码率(BER, Bit Error Rate)度量性能,以经典数学模型为基础的通信理论下,系统容量已经逐渐接近香农极限,
订阅专栏 解锁全文

146

被折叠的 条评论
为什么被折叠?



