【摘 要】为解决如何准确、及时地对移动通信网络扇区进行载波调整的问题,提出了一种基于深度强化学习的扇区扩(减)容算法。采用Model-based强化学习方法,建立了容量指标概率动态模型的多模型组合,利用真实环境的历史数据对模型进行训练,并在此基础上构建了虚拟环境。然后用神经网络构建智能体,并使之与虚拟环境互动,采用短展开技术,产生虚拟样本。最后利用虚拟样本,采用DQN算法对智能体进行策略优化,使其给出扇区扩(减)容操作的建议。实验结果表明,训练后的智能体给出的载波调整建议,达到了较高的正确率。
【关键词】移动通信网络;载波调整;深度强化学习;多模型组合
0 引言
随着移动通信技术的发展,移动通信网络的流量、用户数呈现快速增长。而由于城市环境多样、潮汐效应等原因,移动通信网很容易出现局部区域流量、用户数过高或过低的情况,造成网络拥塞或载波资源闲置。如何及时缓解局部拥塞,同时充分利用每个载波资源,成为移动通信网络运营的关键问题之一。
如能比较准确地预测扇区的流量或用户数,则可在预测值达到扩(减)容门限时,对扇区进行扩(减)容操作,进而解决上述问题。因此&#
订阅专栏 解锁全文
710

被折叠的 条评论
为什么被折叠?



