【摘 要】针对由于我国频谱监测设备数量激增产生了海量频谱监测数据的存储和传输难题,提出一种基于DCT自适应量化的频谱数据有损压缩算法。首先将多帧频谱监测数据组合并经过灰度空间映射形成一幅时频图,后将时频图数据矩阵按列三等分,将等分后的数据作为RGB三通道合成一幅彩色图像并对其进行二维DCT变换,利用BP神经网络估计量化阈值后进行量化,最后经过游程编码与二次熵编码完成频谱监测数据的压缩。通过对真实接收机采集的频谱数据的压缩处理,压缩率约为10%,数据恢复后的百分比均方根误差约为11%。实验结果表明,所提算法具有稳定的压缩率和较小的恢复误差,能够有效地对实际采集的频谱数据进行压缩。
【关键词】频谱数据压缩;离散余弦变换;神经网络;有损压缩
0 引言
无线电频率资源是国家的重要战略资源,具有不可再生性[1]。随着无线电监测技术的发展和监测站的增加以及一体化平台的建设,日常频谱监测工作将产生海量的频谱监测数据,这将对数据的存储和传输带来巨大挑战。因此,研究合适的频谱监测数据的压缩和存储方法是自动化、智能化无线电监测网络的重要组成部分,也是无线电频谱监测的重点研究方向之一。
数据压缩理论是信息论研究中的一个重要课题,也是认知无线电中的研究方向之一,通过消除数据中的冗余,从而保留真正有用的信息。从压
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



