【摘 要】RIS是第六代移动通信系统中潜在的候选技术之一。然而,由于无源的RIS缺乏信号处理能力,这给RIS辅助毫米波大规模MIMO系统的信道估计带来了挑战。为了获得更精确的信道状态信息,将信道估计转化为图像去噪问题,提出改进的DnCNN来完成信道估计任务。具体地,采用LMMSE对信道进行粗估计。融合注意力机制网络和噪声水平估计子网络对DnCNN进行改进,以提高网络对噪声的提取性能和自适应性能,实现从信道的粗估计中得到高精度信道估计值。仿真实验表明,所提算法在低信噪比下具有较好的估计性能。
【关键词】信道估计;RIS;去噪卷积神经网络;mmWave;注意力机制
0 引言
近年来,可重构智能表面(RIS, Reconfigurable Intelligent Surface)的提出在无线通信领域得到较大的关注,其能够增强无线通信系统频谱和能量效率,被认为是第六代移动通信的关键技术之一[1]。RIS是由许多低成本无源反射元件组成的平坦表面,每个元件可以独立地对输入信号施加所需的幅度或相位变化[2-3]。RIS辅助的毫米波大规模多输入多输出(MIMO, Multiple-Input Multiple-Output)系统可调整通信的无线传播环境,当用户设备(UE, User Equipmentÿ
订阅专栏 解锁全文
2078

被折叠的 条评论
为什么被折叠?



