UVA 113 - Power of Cryptography

本文探讨了如何通过直接使用pow函数解决给定数值n和目标值p求解k的问题,其中k^n = p。代码示例中采用double类型进行精确计算,并通过加0.5的方式对结果进行四舍五入处理,确保输出的整数结果准确无误。
摘要由CSDN通过智能技术生成

题目大意:已知n,p,求k使得k^n=p;

分析:直接pow(p, 1.0/n),其中p定义为double型

总结:。。。没能理解。。。

代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#define exp 10e-8
using namespace std;

int main()
{
	int n;
	double p;
	while (scanf("%d%lf", &n, &p) != EOF)
	{
		printf("%d\n",(int)(pow(p, 1.0 / n) + 0.5));
	}

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值