pandas
文章平均质量分 96
pandas学习教程
I'mAlex
现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历定制优化、面试辅导、毕设辅导、项目开发、C/C++/Java/Python/Linux/AI/云平台等方面的服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:gylzbk)
展开
-
【Python】一文讲透Pandas教程,非常详细
Pandas 是一个强大的 Python 数据分析库,广泛用于数据清洗、数据处理、数据分析和数据可视化。本文将提供一个非常详细的 Pandas 教程,帮助你从零开始掌握 Pandas 的基本功能和高级特性。原创 2024-08-09 13:25:35 · 1341 阅读 · 0 评论 -
【Pandas】pandas.isnull详解与实战应用:快速检查缺失值的利器,用于检测数据中的缺失值
在数据分析和处理过程中,缺失值是一大挑战。处理缺失值的第一步通常是识别它们。pandas.isnull 是 Pandas 提供的一个函数,用于检测数据中的缺失值。本文将详细介绍 pandas.isnull 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-06 12:51:43 · 1127 阅读 · 0 评论 -
【Pandas】pandas.notna详解与实战应用:快速检查非缺失值的利器,用于检测数据中的非缺失值
在数据分析和处理过程中,识别非缺失值与识别缺失值同样重要。pandas.notna 是 Pandas 提供的一个函数,用于检测数据中的非缺失值。本文将详细介绍 pandas.notna 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-06 12:51:23 · 690 阅读 · 0 评论 -
【Pandas】pandas.notnull详解与实战应用:快速检查非缺失值的利器,,用于检测数据中的非缺失值
在数据分析和处理过程中,识别非缺失值(非 NaN)的数据同样重要。pandas.notnull 是 Pandas 提供的一个函数,用于检测数据中的非缺失值。本文将详细介绍 pandas.notnull 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-06 12:51:06 · 787 阅读 · 0 评论 -
【Pandas】pandas.to_numeric详解与实战应用:数据类型转换的利器,用于将对象数据(如字符串)转换为数值类型(如整数或浮点数)
在数据分析和处理过程中,数据类型的转换是一个常见且重要的操作。pandas.to_numeric 是 Pandas 提供的一个函数,用于将对象数据(如字符串)转换为数值类型(如整数或浮点数)。本文将详细介绍 pandas.to_numeric 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-06 12:50:48 · 630 阅读 · 0 评论 -
【Pandas】pandas.to_datetime详解与实战应用:日期时间转换神器,用于将对象数据(如字符串)转换为日期时间类型
在数据分析和处理过程中,日期时间类型的数据转换和处理是一个常见且重要的任务。pandas.to_datetime 是 Pandas 提供的一个函数,用于将对象数据(如字符串)转换为日期时间类型。本文将详细介绍 pandas.to_datetime 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-06 12:50:26 · 1248 阅读 · 0 评论 -
【Pandas】pandas.to_timedelta详解与实战应用:时间差数据转换神器,用于将对象数据(如字符串)转换为时间差类型
在数据分析和处理过程中,时间差(timedelta)类型的数据转换和处理是一个重要的任务。pandas.to_timedelta 是 Pandas 提供的一个函数,用于将对象数据(如字符串)转换为时间差类型。本文将详细介绍 pandas.to_timedelta 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 17:51:45 · 858 阅读 · 0 评论 -
【Pandas】pandas.date_range详解与实战应用:快速生成日期序列的利器,用于生成固定频率的日期时间序列
在数据分析和处理过程中,生成日期序列是一项非常常见的任务。pandas.date_range 是 Pandas 提供的一个函数,用于生成固定频率的日期时间序列。本文将详细介绍 pandas.date_range 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 17:51:28 · 933 阅读 · 0 评论 -
【Pandas】pandas.bdate_range详解与实战应用:快速生成商务日期序列的利器,用于生成固定商务频率的日期时间序列
在数据分析和处理过程中,生成商务日期(即工作日)序列是一项常见的任务。pandas.bdate_range 是 Pandas 提供的一个函数,用于生成固定商务频率的日期时间序列。本文将详细介绍 pandas.bdate_range 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 17:51:13 · 1034 阅读 · 0 评论 -
【Pandas】pandas.period_range详解与实战应用:快速生成周期序列的强力工具,用于生成固定频率的周期序列
在数据分析和处理过程中,生成周期(Period)序列是一项非常常见的任务。pandas.period_range 是 Pandas 提供的一个函数,用于生成固定频率的周期序列。本文将详细介绍 pandas.period_range 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:44:49 · 952 阅读 · 0 评论 -
【Pandas】pandas.timedelta_range详解与实战应用:生成时间差序列的利器,用于生成固定频率的时间差序列
在数据分析和处理过程中,生成时间差(Timedelta)序列是一项常见的任务。pandas.timedelta_range 是 Pandas 提供的一个函数,用于生成固定频率的时间差序列。本文将详细介绍 pandas.timedelta_range 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:44:35 · 1026 阅读 · 0 评论 -
【Pandas】pandas.infer_freq详解与实战应用:推断时间序列频率的神器,用于根据时间序列数据自动推断其频率
在处理时间序列数据时,确定时间序列的频率是一个重要的步骤。pandas.infer_freq 是 Pandas 提供的一个函数,用于根据时间序列数据自动推断其频率。本文将详细介绍 pandas.infer_freq 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:44:23 · 734 阅读 · 0 评论 -
【Pandas】pandas.interval_range详解与实战应用:生成区间序列的利器,用于生成固定长度的区间序列
在数据分析和处理过程中,生成区间(Interval)序列是一项常见的需求。pandas.interval_range 是 Pandas 提供的一个函数,用于生成固定长度的区间序列。本文将详细介绍 pandas.interval_range 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:43:39 · 857 阅读 · 0 评论 -
【Pandas】pandas.eval详解与实战应用:高效的数据操作和计算利器,用于高效地评估字符串表达式,并将其作为代码执行
在数据分析和处理过程中,高效的计算和数据操作是至关重要的。pandas.eval 是 Pandas 提供的一个函数,用于高效地评估字符串表达式,并将其作为代码执行。本文将详细介绍 pandas.eval 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:43:20 · 1048 阅读 · 0 评论 -
【Pandas】pandas.tseries.api.guess_datetime_format详解与实战应用:自动识别日期时间格式的利器,用于根据给定的日期字符串自动猜测其日期时间格式
在数据分析和处理过程中,日期时间格式的识别和解析是一个常见且重要的任务。pandas.tseries.api.guess_datetime_format 是 Pandas 提供的一个函数,用于根据给定的日期字符串自动猜测其日期时间格式。本文将详细介绍 pandas.tseries.api.guess_datetime_format 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:42:59 · 756 阅读 · 0 评论 -
【Pandas】pandas.util.hash_pandas_object详解与实战应用:高效的数据对象哈希计算利器,对Pandas数据对象(如 DataFrame、Series 等)进行哈希计算
在数据分析和处理过程中,对数据对象进行哈希计算是一个重要的任务。pandas.util.hash_pandas_object 是 Pandas 提供的一个函数,专门用于对 Pandas 数据对象(如 DataFrame、Series 等)进行哈希计算。本文将详细介绍 pandas.util.hash_pandas_object 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:42:38 · 694 阅读 · 0 评论 -
【Pandas】pandas.api.interchange.from_dataframe详解与实战应用:用于将Pandas DataFrame转换为符合数据interchange API规范的对象
pandas.api.interchange.from_dataframe 是 Pandas 提供的一个函数,用于将 Pandas DataFrame 转换为符合数据 interchange API 规范的对象。此功能在数据交换和提升互操作性方面特别有用。原创 2024-08-05 12:42:24 · 942 阅读 · 0 评论 -
【Pandas】pandas.util.hash_array详解与实战应用:数据哈希计算的利器,用于对数组进行哈希计算
在数据分析和处理过程中,计算数据的哈希值是一个常见且重要的任务。pandas.util.hash_array 是 Pandas 提供的一个函数,用于对数组进行哈希计算。本文将详细介绍 pandas.util.hash_array 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-05 12:42:08 · 607 阅读 · 0 评论 -
【Pandas】pandas.isna详解与实战应用:快速检查缺失值的利器,用于检测数据中的缺失值
在数据分析和处理过程中,缺失值是一大挑战。处理缺失值的第一步通常是识别它们。pandas.isna 是 Pandas 提供的一个函数,用于检测数据中的缺失值。本文将详细介绍 pandas.isna 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 21:59:25 · 1142 阅读 · 2 评论 -
【Pandas】pandas.wide_to_long详解与实战应用:宽格式数据重塑的利器,用于将宽格式数据重塑为长格式数据。长格式数据在处理多变量数据、时间序列分析和绘图时更为方便和实用
在数据分析和处理过程中,常常需要将宽格式的数据转换为长格式的数据,以便更好地适应分析需求。pandas.wide_to_long 是 Pandas 提供的一个函数,用于将宽格式数据重塑为长格式数据。长格式数据在处理多变量数据、时间序列分析和绘图时更为方便和实用。本文将详细介绍 pandas.wide_to_long 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 21:45:46 · 949 阅读 · 0 评论 -
【Pandas】pandas.lreshape详解与实战应用:长格式数据重塑的利器,用于将宽格式的数据转换为长格式。长格式数据在处理多变量数据、时间序列分析和绘图时更为实用
在数据分析和处理过程中,经常需要对数据进行重塑操作,以便更好地适应分析需求。pandas.lreshape 是 Pandas 提供的一个函数,用于将宽格式的数据转换为长格式。长格式数据在处理多变量数据、时间序列分析和绘图时更为实用。本文将详细介绍 pandas.lreshape 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 21:44:24 · 673 阅读 · 0 评论 -
【Pandas】pandas.unique详解与实战应用:一探独一值的奥秘,用于返回数据中唯一值的数组
在数据分析和处理过程中,常常需要提取一列或一组数据中的唯一值,即独一无二的元素。pandas.unique 是 Pandas 提供的一个函数,用于返回数据中唯一值的数组。本文将详细介绍 pandas.unique 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 21:43:10 · 858 阅读 · 0 评论 -
【Pandas】pandas.from_dummies详解与实战应用:独热编码还原神器,用于将独热编码的数据转换回原始的类别数据,非常实用和高效(1.5.0版本新增函数)
在数据分析和处理过程中,常常需要将独热编码(One-Hot Encoding)后的数据还原为原始的类别数据。pandas.from_dummies 是 Pandas 1.5.0 提供的新增函数,用于将独热编码的数据转换回原始的类别数据,非常实用和高效。本文将详细介绍 pandas.from_dummies 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 21:41:30 · 834 阅读 · 0 评论 -
【Pandas】pandas.factorize详解与实战应用:数据因子化神器,用于将类别变量或对象数组转换为数值型编码
在数据分析和处理过程中,尤其是处理分类数据时,常常需要将类别变量转换为数值型变量。pandas.factorize 是 Pandas 提供的一个函数,用于将类别变量或对象数组转换为数值型编码。本文将详细介绍 pandas.factorize 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:25:04 · 999 阅读 · 0 评论 -
【Pandas】pandas.get_dummies详解与实战应用:类别数据的独热编码神器,用于将类别变量转换为独热编码(one-hot encoding),即将每个类别值转换为一个新的列
在数据分析和处理过程中,尤其是机器学习模型构建时,常常需要将类别特征转换为数值特征。pandas.get_dummies 是 Pandas 提供的一个函数,用于将类别变量转换为独热编码(one-hot encoding),即将每个类别值转换为一个新的列。本文将详细介绍 pandas.get_dummies 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:22:13 · 880 阅读 · 0 评论 -
【Pandas】pandas.concat详解与实战应用:数据拼接的利器,用于在不同 DataFrame 或 Series 之间进行拼接操作
在数据分析和处理过程中,经常需要将多个数据集进行拼接操作,以便综合利用多源数据进行分析。pandas.concat 是 Pandas 提供的一个强大函数,用于在不同 DataFrame 或 Series 之间进行拼接操作。本文将详细介绍 pandas.concat 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:21:03 · 951 阅读 · 0 评论 -
【Pandas】pandas.merge_asof详解与实战应用:基于最近匹配的合并神器,用于在两个 DataFrame 之间进行基于最近匹配的合并,特别适用于时间序列数据的合并
在数据分析和处理过程中,常常需要合并两个数据集并根据时间或其他有序变量进行“最近匹配”。pandas.merge_asof 是 Pandas 提供的一个函数,用于在两个 DataFrame 之间进行基于最近匹配的合并,特别适用于时间序列数据的合并。本文将详细介绍 pandas.merge_asof 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:19:51 · 1032 阅读 · 0 评论 -
【Pandas】pandas.merge_ordered详解与实战应用:有序数据的合并利器,用于在两个 DataFrame 之间进行有序合并,特别适用于时间序列数据的合并
在数据分析和处理过程中,时序数据的合并是一个常见任务。pandas.merge_ordered 是 Pandas 提供的一个函数,用于在两个 DataFrame 之间进行有序合并,特别适用于时间序列数据的合并。本文将详细介绍 pandas.merge_ordered 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:18:48 · 707 阅读 · 0 评论 -
【Pandas】pandas.merge详解与实战应用:数据合并的高级用法,用于在不同 DataFrame 之间进行合并,类似于 SQL 中的 JOIN 操作
【Pandas】pandas.merge详解与实战应用:数据合并的高级用法,,用于在不同 DataFrame 之间进行合并,类似于 SQL 中的 JOIN 操作原创 2024-08-04 20:17:18 · 1059 阅读 · 0 评论 -
【Pandas】pandas.cut详解与实战应用:数值数据的分箱处理,用于将数值数据分割为离散的区间,可以以标签或是区间范围的形式返回,对于数据的可视化和统计分析非常有帮助
在数据分析和处理过程中,经常需要将连续的数值数据转换为离散的区间或类别,这一过程称为分箱(或分段)。pandas.cut 是 Pandas 提供的一个函数,用于将数值数据分割为离散的区间,可以以标签或是区间范围的形式返回。这对于数据的可视化和统计分析非常有帮助。本文将详细介绍 pandas.cut 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:16:08 · 915 阅读 · 0 评论 -
【Pandas】pandas.crosstab详解与实战应用:交叉表的高级用法,用于计算交叉表,支持多种聚合操作和复杂的数据处理
在数据分析和处理过程中,交叉表是一种常用的工具,可以帮助我们汇总和比较数据的频率分布。pandas.crosstab 是 Pandas 提供的一个函数,用于计算交叉表,支持多种聚合操作和复杂的数据处理。本文将详细介绍 pandas.crosstab 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:14:04 · 1203 阅读 · 0 评论 -
【Pandas】pandas.pivot_table详解与实战应用:数据透视表的高级用法,用于创建数据透视表,支持多种聚合操作和复杂的数据处理
在数据分析和处理过程中,数据透视表是一个非常强大的工具,可以帮助我们汇总和重塑数据。pandas.pivot_table 是 Pandas 提供的一个函数,用于创建数据透视表,支持多种聚合操作和复杂的数据处理。本文将详细介绍 pandas.pivot_table 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:12:59 · 1969 阅读 · 0 评论 -
【Pandas】pandas.pivot详解与实战应用:数据透视表的利器,创建数据透视表的重要工具,可以将长格式的数据转化为宽格式,从而更直观地展示数据
在数据分析和处理过程中,经常需要对数据进行重塑,以便更好地理解和分析数据。Pandas 提供了强大的 pivot 函数,可以轻松实现这一任务。pandas.pivot 是创建数据透视表的重要工具,可以将长格式的数据转化为宽格式,从而更直观地展示数据。本文将详细介绍 pandas.pivot 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:11:44 · 1007 阅读 · 0 评论 -
【Pandas】pandas.melt详解与实战应用:重塑DataFrame的利器,可以将多个列的值转换为行形式,将数据从宽格式转换为长格式或者相反
在数据分析和处理过程中,经常需要对数据进行重塑,将数据从宽格式转换为长格式或者相反。Pandas 提供了强大的 melt 函数,可以轻松实现这一任务。pandas.melt 是重塑 DataFrame 的利器,可以将多个列的值转换为行形式,非常适合数据清洗和预处理阶段。本文将详细介绍 pandas.melt 的用途和用法,包括其参数详解、示例代码以及进阶使用技巧。原创 2024-08-04 20:09:18 · 926 阅读 · 0 评论 -
【Pandas】pandas.io.stata.StataReader.value_labels详解与实战应用:从Stata文件中读取值标签
在数据科学和分析过程中,经常需要从各种文件格式中读取数据进行处理。Pandas 提供了丰富的 I/O 工具,其中 pandas.io.stata.StataReader 类用于处理 Stata 文件。该类的 value_labels 属性可以获取 Stata 文件中的值标签。这篇博客将详细讲解 StataReader.value_labels 属性,包括其作用、使用方法、参数详解、示例代码以及注意事项。原创 2024-08-04 18:18:36 · 919 阅读 · 0 评论 -
【Pandas】pandas.io.stata.StataReader.variable_labels详解与实战应用:从Stata文件中读取变量标签
在数据科学和分析过程中,经常需要从各种文件格式中读取数据进行处理。Pandas 提供了丰富的 I/O 工具,其中 pandas.io.stata.StataReader 类用于处理 Stata 文件。该类的 variable_labels 属性可以获取 Stata 文件中的变量标签。这篇博客将详细讲解 StataReader.variable_labels 属性,包括其作用、使用方法、参数详解、示例代码以及注意事项。原创 2024-08-04 18:18:26 · 965 阅读 · 0 评论 -
【Pandas】pandas.DataFrame.to_stata详解与实战应用:将DataFrame数据写入Stata格式文件
在数据科学和分析过程中,有时需要将数据从 Pandas DataFrame 导出为 Stata 文件格式,以便在 Stata 软件中进行进一步的分析和使用。Pandas 提供了 pandas.io.stata.StataWriter 类与 write_file 方法,允许将 DataFrame 数据写入 Stata 文件 (.dta 格式)。这篇博客将详细讲解 StataWriter.write_file 方法,包括其作用、使用方法、参数详解、示例代码以及注意事项。原创 2024-08-04 18:18:12 · 1028 阅读 · 0 评论 -
【Pandas】pandas.io.stata.StataReader.data_label详解与实战应用:从Stata文件中读取数据集标签
在数据科学和分析过程中,经常需要从各种文件格式中读取数据进行处理。Pandas 提供了丰富的 I/O 工具,其中 pandas.io.stata.StataReader 类用于处理 Stata 文件。该类的 data_label 属性可以获取 Stata 文件的数据标签。这篇博客将详细讲解 StataReader.data_label 属性,包括其作用、使用方法、参数详解、示例代码以及注意事项。原创 2024-08-04 18:17:53 · 559 阅读 · 0 评论 -
【Pandas】pandas.read_orc 详解与实战应用:读取 ORC 格式数据
ORC(Optimized Row Columnar)是一种高效的列式存储格式,广泛应用于大数据处理框架,如 Apache Hadoop 和 Apache Hive 等。Pandas 提供了 read_orc 函数,用于从 ORC 文件中读取数据,并将其转换为 Pandas DataFrame。这篇博客将详细讲解 read_orc 方法,包括其作用、使用方法、参数详解、示例代码以及注意事项。原创 2024-08-03 17:22:04 · 615 阅读 · 0 评论 -
【Pandas】pandas.DataFrame.to_orc 详解与实战应用:将DataFrame写入ORC格式
ORC(Optimized Row Columnar)是一种高效的列式存储格式,广泛应用于大数据处理框架,如 Apache Hadoop 和 Apache Hive 等。Pandas 提供了 to_orc 方法,允许将 Pandas DataFrame 写入 ORC 文件。这篇博客将详细讲解 to_orc 方法,包括其作用、使用方法、参数详解、示例代码以及注意事项。原创 2024-08-03 17:21:38 · 961 阅读 · 0 评论