基于变分自编码器的生成对抗网络

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/g8015108/article/details/78072439

基于变分自编码器的生成对抗网络(VEGAN)

https://arxiv.org/abs/1512.09300

Motivation

前面的文章基于自编码器的GAN中已经提到了,AEGAN中有一个问题,就是如果我们的结果太真实,那么相对来说,多样性上就会有所缺失,因此,这篇文章主要就是用VAE来解决原始AEGAN中的多样性问题。

VAE

关于VAE,可以参考以前的博文VAE
我们可以把它看做一个采样的过程,只不过这个采样来自于我们指定的分布

VAEGAN

没有找到VAEGAN的图,所以还是用原来的代替。这里的z来自一个指定的分布,通过这个z来生成新的图像,与AEGAN不同的是这个z是我们指定的分布,而AEGAN中,采样分布才是制定分布。因此,我们可以说这样获取的z,可以更好的接近原始数据。或者换一种说法,我们让一个制定分布通过一系列变化生成的样本更加接近真实样本。而不是对特征的编码,这样覆盖的面更大,结果也更好
这里写图片描述

展开阅读全文

没有更多推荐了,返回首页