分支限界求解TSP问题

分支限界求TSPTSP问题中,任意一条完整路径上的每个城市都有两条边,一条进入城市,一条离开城市.

所以对于任意一个路径的费用矩阵而言,每一行(列)中的最小值(不包括由A到A的点对角线上的).

是必须要用到的费用.

 

左支的生成可直接去掉所展开的0元素所在的行和列(依据引理选取要展开的结点:

选取要展开的矩阵.矩阵的选取是选取当前下界值最小的矩阵.
展开结点的选取.每个归约后的矩阵将会有至少n(n为该节点的矩阵维数)个0元素.选取哪个来展开?
  由于任何一个结点的展开都是分为两支,左支为选择了当前元素(城市),右支则是在当前位置不选该元素.
  对于待选择的0元素而言,如果将其展开,其右支的归约值较大,则说明选择该点为最优路径的可能性较高.因为最优路径的值是固定的,如果选取的展开元素比其它的0元素的右支的值更大,则其左支就相对更小的概率就会更大.


注:当然这个只是有更大的概率而并不是说肯定是最优路径上的点.

 

左支的生成可直接去掉所展开的0元素所在的行和列(依据引理1并对已生成路径(一条/多条)进行避免回路操作,防止再次选中该城市,这里采用将回路元素设置为+∞将来实现.右支则直接将该元素设置为+∞,防止发生二次展开.
对生成的两个结点进行归约操作,并更新归约值h,将结点放入结点表中,选择当前归约值最小的矩阵作为要展开的结点,再选择0元素,然后继续生成左支和右支.
当所选矩阵为二维矩阵的时候,直接连接两个0元素所在城市即可获得最优的路径.

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
支限界法类又称为剪枝限界法或分支定界法,它类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。它与回溯法有两点不同:①回溯法只通过约束条件剪去非可行解,而分支限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解。②在解空间树上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索的进程, 在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。 从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式: ①队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。 ②优先队列式分支限界法:优先队列式分支限界法将活结点表按照某个估值函数C(x)的值组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。 影响分支限界法搜索效率的有两个主要因素:一是优先队列Q的优先级由C(x)确定,它能否保证在尽可能早的情况下找到最优解,如果一开始找到的就是最优解,那么搜索的空间就能降低到最小。二是限界函数u(x),它越严格就越可能多地剪去分支,从而减少搜索空间。 在用分支限界法解决TSP问题时,有不少很好的限界函数和估值函数已经构造出来出了(限于篇幅,这里不做详细介绍), 使得分支限界法在大多数情况下的搜索效率大大高于回溯法。但是,在最坏情况下,该算法的时间复杂度仍然是O(n!),而且有可能所有的(n-1)!个结点都要存储在队列中。 近似算法是指不能肯定找到最优解的算法,但通常找到的也是比较好的解,或称近似最优解。[20]一般而言,近似算法的时间复杂度较低,通常都是多项式时间内的。由于近似算法的时间效率高,所以在实际应用中,主要是使用近似算法,这一类算法也一直是研究的主要对象。传统的近似算法以采用贪心策略和局部搜索为主,而几十年来,随着以遗传算法为代表的新型启发式搜索算法的逐步完善,在解决TSP问题上获得了巨大的成功。遗传算法、模拟退火算法、蚁群算法等已经成为公认的好算法。在本节中,将介绍传统的近似算法。
TSP问题(Traveling Salesman Problem,旅行商问题)是一个经典的组合优化问题,目标是找到一条路径,使得旅行商从起点出发,经过所有城市恰好一次,最后回到起点,并且总路径长度最短。 分支限界算法是一种常用于解决TSP问题的算法。其本质是宽度优先算法,通过遍历搜索空间中的所有可能解,并根据一些剪枝策略来减少搜索的时间和空间复杂度,从而找到最优解。 在分支限界算法中,为了提高算法的效率,可以给最优解赋予一个合适的初值,便于进行剪枝操作。一种常见的做法是使用贪心算法求得一个近似最优解作为最优解的初值,这样可以显著提高剪枝效果。 下面是一个示例代码,演示了如何使用分支限界算法解决TSP问题: ```python import numpy as np def tsp(graph, start): n = len(graph) visited = [False] * n visited[start] = True path = [start] min_cost = float('inf') def backtrack(curr, cost, count): nonlocal min_cost if count == n - 1: min_cost = min(min_cost, cost + graph[curr][start]) return for i in range(n): if not visited[i]: visited[i] = True path.append(i) backtrack(i, cost + graph[curr][i], count + 1) path.pop() visited[i] = False backtrack(start, 0, 0) return min_cost # 示例图的邻接矩阵表示 graph = np.array([[0, 2, 9, 10], [1, 0, 6, 4], [15, 7, 0, 8], [6, 3, 12, 0]]) start_city = 0 shortest_path = tsp(graph, start_city) print("Shortest path length:", shortest_path) ``` 这段代码使用了回溯法来遍历所有可能的路径,并通过剪枝操作来减少搜索空间。其中,`graph`是TSP问题的邻接矩阵表示,`start_city`是起始城市的索引,`shortest_path`是最短路径的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丈八涯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值