Windows下使用Hadoop2.6.0-eclipse-plugin插件

首先说一下本人的环境:

Windows7  64位系统

Spring Tool Suite  Version: 3.4.0.RELEASE

Hadoop2.6.0


一.简介

  Hadoop2.x之后没有Eclipse插件工具,我们就不能在Eclipse上调试代码,我们要把写好的java代码的MapReduce打包成jar然后在Linux上运行,所以这种不方便我们调试代码,所以我们自己编译一个Eclipse插件,方便我们在我们本地上调试,经过hadoop1.x的发展,编译hadoop2.x版本的eclipse插件比之前简单多了。接下来我 们开始编译Hadoop-eclipse-plugin插件,并在Eclipse开发Hadoop。

二.软件安装并配置

 

 1.JDK配置

    1) 安装jdk

    2) 配置环境变量

      JAVA_HOME、CLASSPATH、PATH等设置,这里就不多介绍,网上很多资料

 2.Eclipse

   1).下载eclipse-jee-juno-SR2.rar

   2).解压到本地磁盘,如图所示:

     

3.Ant

  1)下载

   http://ant.apache.org/bindownload.cgi

   apache-ant-1.9.4-bin.zip

 2)解压到一个盘,如图所示:

   

 3).环境变量的配置

    新建ANT_HOME=E:\ant\apache-ant-1.9.4-bin\apache-ant-1.9.4

    在PATH后面加;%ANT_HOME%\bin

 4)cmd 测试一下是否配置正确

    ant version   如图所示:

 

4.Hadoop

 1).下载hadoop包

    hadoop-2.6.0.tar.gz

   解压到本地磁盘,如图所示:

 

下载hadoop2x-eclipse-plugin源代码

 1)目前hadoop2的eclipse-plugins源代码由github脱管,下载地址是https://github.com/winghc/hadoop2x-eclipse-plugin,然后在右侧的Download ZIP连接点击下载,如图所示:

    


2)下载hadoop2x-eclipse-plugin-master.zip

   解压到本地磁盘,如图所示:

    

三.编译hadoop-eclipse-plugin插件


   

 1.hadoop2x-eclipse-plugin-master解压在E:盘打开命令行cmd,切换到E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin 目录,如图所示:

     

2.执行ant jar

 antjar -Dversion=2.6.0 -Declipse.home=F:\tool\eclipse-jee-juno-SR2\eclipse-jee-juno-SR2 -Dhadoop.home=E:\hadoop\hadoop-2.6.0\hadoop-2.6.0,如图所示:



 3.编译成功生成的hadoop-eclipse-plugin-2.6.0.jar在E:\hadoop\hadoop2x-eclipse-plugin-master\build\contrib\eclipse-plugin路径下,如图所示:

   

四.Eclipse配置hadoop-eclipse-plugin 插件

   

 1.我已经把可以用的插件包上传了,http://pan.baidu.com/s/1qWG7XxU(请注意我的环境win7 64位)把hadoop-eclipse-plugin-2.6.0.jar拷贝到F:\tool\eclipse-jee-juno-SR2\eclipse-jee-juno-SR2\plugins目录下,重启一下Eclipse,然后可以看到DFS Locations,如图所示:


 2.打开Window-->Preferens,可以看到Hadoop Map/Reduc选项,然后点击,然后添加hadoop-2.6.0进来,如图所示:


3.配置Map/ReduceLocations

   1)点击Window-->Show View -->MapReduce Tools  点击Map/ReduceLocation

   2)点击Map/ReduceLocation选项卡,点击右边小象图标,打开Hadoop Location配置窗口: 输入Location Name,任意名称即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成hdfs-site.xml与core-site.xml的设置一致即可。


4.查看是否连接成功



五.新建MapReduce项目并运行

   1.右击New->Map/Reduce Project

   2.新建WordCount.java(在Hadoop的share目录下找到mapreduce的案例,copy过来)

   3.在hdfs创建一个input目录(输出目录可以不用创建,运行MR是会自动创建),并上传一个file01文件(随便写几个单词)

       hdfs dfs -mkdir –p  /user/root/input

       hdfs dfs -mkdir -p  /user/root/output

        hadoop fs -put file01 /input

  

   


 4.点击WordCount.java右击-->Run As-->Run COnfigurations   设置输入和输出目录路径,如图所示:

  

 5.点击WordCount.java右击-->Run As-->Run on  Hadoop

  

      

  

 然后到output/count目录下,有一个统计文件,并查看结果,所以配置成功。

 



六、接下来就是可能遇到的问题:

问题一.An internal error occurred during: "Map/Reducelocation status updater".java.lang.NullPointerException

   我们hadoop-eclipse-plugin-2.6.0.jar放到Eclipse的plugins目录下,我们的Eclipse目录是F:\tool\eclipse-jee-juno-SR2\eclipse-jee-juno-SR2\plugins,重启一下Eclipse,然后,打开Window-->Preferens,可以看到Hadoop Map/Reduc选项,然后点击出现了An internal error occurredduring: "Map/Reduce location status updater".java.lang.NullPointerException,如图所示:

   

  解决:

   我们发现刚配置部署的Hadoop2还没创建输入和输出目录,先在hdfs上建个文件夹 。

   #bin/hdfs dfs -mkdir –p /user/root/input

   #bin/hdfs dfs -mkdir -p  /user/root/output

 我们在Eclipse的DFS Locations目录下看到我们这两个目录,如图所示:

  

问题二.Exception in thread "main" java.lang.NullPointerException atjava.lang.ProcessBuilder.start(Unknown Source)
  

运行Hadoop2的WordCount.java代码时出现了这样错误,

     

  log4j:WARNPlease initialize the log4j system properly.
log4j:WARN Seehttp://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception in thread "main" java.lang.NullPointerException
       atjava.lang.ProcessBuilder.start(Unknown Source)
       atorg.apache.hadoop.util.Shell.runCommand(Shell.java:482)
       atorg.apache.hadoop.util.Shell.run(Shell.java:455)
       atorg.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715)
       atorg.apache.hadoop.util.Shell.execCommand(Shell.java:808)
       atorg.apache.hadoop.util.Shell.execCommand(Shell.java:791)
       at


分析:

  下载Hadoop2以上版本时,在Hadoop2的bin目录下没有winutils.exe

解决:

  1.下载http://pan.baidu.com/s/1qWG7XxU下载Hadoop2.6.0-eclipse插件.zip,然后解压后,把Hadoop2.6.0-eclipse插件.zip\eclipse插件\2.4以后的目录中的winutils.exe复制Hadoop2/bin目录下。如图所示:

     

  2.Eclipse-》window-》Preferences 下的Hadoop Map/Peduce 把下载放在我们的磁盘的Hadoop目录引进来,如图所示:

    

 

  3.Hadoop2配置变量环境HADOOP_HOME 和path,如图所示:

 

 问题三.Exception in thread "main"java.lang.UnsatisfiedLinkError:org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z

  当我们解决了问题三时,在运行WordCount.java代码时,出现这样的问题

    

log4j:WARN No appenders could be found forlogger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4jsystem properly.
log4j:WARN Seehttp://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception in thread "main"java.lang.UnsatisfiedLinkError:org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
       atorg.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
       atorg.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:557)
       atorg.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
       atorg.apache.hadoop.util.DiskChecker.checkAccessByFileMethods(DiskChecker.java:187)
       atorg.apache.hadoop.util.DiskChecker.checkDirAccess(DiskChecker.java:174)
       atorg.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:108)
       atorg.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.confChanged(LocalDirAllocator.java:285)
       atorg.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:344)
       atorg.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:150)
       atorg.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:131)
       atorg.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:115)
       atorg.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:131)

 分析:

    C:\Windows\System32下缺少hadoop.dll,把这个文件拷贝到C:\Windows\System32下面即可。

 解决:

   将压缩包中的hadoop.dll放到C:\Windows\System32下,然后重启电脑,也许还没那么简单,还是出现这样的问题。如果这个还是没解决,最好在%HADOOP_HOME%/bin目录下面也复制一份。

 

  我们在继续分析:

    我们在出现错误的的atorg.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:557)我们来看这个类NativeIO的557行,如图所示:

       

 

   Windows的唯一方法用于检查当前进程的请求,在给定的路径的访问权限,所以我们先给以能进行访问,我们自己先修改源代码,return true 时允许访问。我们下载对应hadoop源代码,hadoop-2.6.0-src.tar.gz解压,hadoop-2.6.0-src\hadoop-common-project\hadoop-common\src\main\java\org\apache\hadoop\io\nativeio下NativeIO.java 复制到对应的Eclipse的project,然后修改557行为return true如图所示:

  

   

  问题四:org.apache.hadoop.security.AccessControlException: Permissiondenied: user=zhengcy, access=WRITE,inode="/user/root/output":root:supergroup:drwxr-xr-x

  我们在执行运行WordCount.java代码时,出现这样的问题

    

2014-12-18 16:03:24,092  WARN (org.apache.hadoop.mapred.LocalJobRunner:560) - job_local374172562_0001
org.apache.hadoop.security.AccessControlException: Permission denied: user=zhengcy, access=WRITE, inode="/user/root/output":root:supergroup:drwxr-xr-x
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkFsPermission(FSPermissionChecker.java:271)
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:257)
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:238)
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:179)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkPermission(FSNamesystem.java:6512)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkPermission(FSNamesystem.java:6494)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkAncestorAccess(FSNamesystem.java:6446)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirsInternal(FSNamesystem.java:4248)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirsInt(FSNamesystem.java:4218)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:4191)
	at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:813)


 分析:

  我们没权限访问output目录。

解决:

    我们 在设置hdfs配置的目录是在hdfs-site.xml配置hdfs文件存放的地方,我在hadoop伪分布式部署那边有介绍过,我们在这边在复习一下,如图所示:

我们在这个etc/hadoop下的hdfs-site.xml添加

  <property> 

     <name>dfs.permissions</name> 
     <value>false</value> 
  </property>

设置没有权限,不过我们在正式的 服务器上不能这样设置。

  问题五:File/usr/root/input/file01._COPYING_ could only be replicated to 0 nodes instead ofminRepLication (=1) There are 0 datanode(s) running and no node(s) are excludedin this operation

     如图所示:

      

  分析:  

  我们在第一次执行#hadoop namenode –format 完然后在执行#sbin/start-all.sh 

在执行#jps,能看到Datanode,在执行#hadoop namenode –format然后执行#jps这时看不到Datanode ,如图所示:

      

   然后我们想把文本放到输入目录执行bin/hdfs dfs -put/usr/local/hadoop/hadoop-2.6.0/test/* /user/root/input  把/test/*文件上传到hdfs的/user/root/input中,出现这样的问题,

 解决:

  是我们执行太多次了hadoopnamenode –format,在创建了多个,我们对应的hdfs目录删除hdfs-site.xml配置的保存datanode和namenode目录。


  问题六:在复制了hadoop.dll后,运行WordCount,发现运行一会没有任何信息输出就结束了

  解决:可以写一个log4j日志文件,查看一下日志的输出,可能从输出的日志中发现问题。

    内容写为:

log4j.rootLogger=debug,stdout,R 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%5p - %m%n 
log4j.appender.R=org.apache.log4j.RollingFileAppender 
log4j.appender.R.File=mapreduce_test.log 
log4j.appender.R.MaxFileSize=1MB 
log4j.appender.R.MaxBackupIndex=1 
log4j.appender.R.layout=org.apache.log4j.PatternLayout 
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n 
log4j.logger.com.codefutures=DEBUG

 问题七:有了log4j日志输出后,查看问题就比较方便了,如果同一个MR执行两次,会出现输出文件已存在的问题

解决:可以删除掉存在的输出文件,也可以改代码中输出的路径

 

Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://192.168.233.11:8020/mroutput already exists
	at org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:146)
	at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:562)
	at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:432)
	at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
	at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:396)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
	at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
	at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1314)
	at test.WordCount.main(WordCount.java:87)

 问题八:出现内存溢出的问题java.lang.OutOfMemoryError

  WARN - job_local845949011_0001
 java.lang.Exception: java.lang.OutOfMemoryError: Java heap space
	at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:522)
Caused by: java.lang.OutOfMemoryError: Java heap space
	at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.init(MapTask.java:983)
	at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:401)
	at org.apache.hadoop.mapred.MapTask.access$100(MapTask.java:81)
	at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:695)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:767)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:243)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:441)
	at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303)
	at java.util.concurrent.FutureTask.run(FutureTask.java:138)
	at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
	at java.lang.Thread.run(Thread.java:619)

解决:右键WordCount,-->run Confi....


感谢:(部分内容摘自下面,自己做了一些修改和补充)

http://blog.csdn.net/congcong68/article/details/42098391

http://blog.csdn.net/congcong68/article/details/42043093

引用博文:

https://my.oschina.net/muou/blog/408543#comment-list

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值