Python3与OpenCV3.3 图像处理(三)--Numpy数组操作

一、本节简述

本节主要讲解Numpy数组操作的一些基础知识。


二、什么是Numpy

 

       一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。

NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran等所做的任务。

 

 

 


三、示例代码

 

import cv2 as cv
import  numpy as np


def access_pixel(image):
    """访问图像所有的像素"""
    print(image.shape)

    #获取图像的高度,图像的高度为shape的第一个值(维度)
    height=image.shape[0]
    #获取图像的宽读,图像的宽度为shape的第二个值(维度)
    width=image.shape[1]
    #获取图像通道数目,图像的通道数目为shape的第三个值(维度)
    #加载进来的图像都有三个通道,三个通道是图像的RGB
    channels=image.shape[2]
    print("width: %s,height: %s channels: %s"%(width,height,channels))

    #循环获取每个像素点,并且修改,然后存储修改后的

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 鲸 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读