机器学习-Bias-Variance

本文探讨了 Bias 和 Variance 在机器学习中的作用,解释了它们的来源及如何影响模型性能。Bias 主要源于训练集未能涵盖测试集中的情况,而 Variance 则是因为训练集中存在不应属于真实情况的数据。理想的模型应平衡两者。解决欠拟合和过拟合的方法包括数据端的 Bagging、扩充高质量数据集和特征选择,以及模型端的正则化和选择适当复杂度的模型。加入扩展特征可能会增加 Bias 和 Variance 的风险。参考 CMU 的相关论文,了解更多详情。
摘要由CSDN通过智能技术生成
  • 对Bias和Variance的来源的解释

Bias:来源于训练集中没有的,测试集中存在的data产生的。

Variance:来源于训练集里有的,但是测试集里没有的,且不应该属于ground truth的data(这里其实有个假设:就是test data认为是没有噪音的,完全是ground truth)。

三个值

  • h相当于模型对训练集不含有variance的数据进行拟合产生的最佳模型。
  • f相当于对测试集数据应该产生的模型
  • y相当于对训练集含有噪声的数据应该产生的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值