- 对Bias和Variance的来源的解释
Bias:来源于训练集中没有的,测试集中存在的data产生的。
Variance:来源于训练集里有的,但是测试集里没有的,且不应该属于ground truth的data(这里其实有个假设:就是test data认为是没有噪音的,完全是ground truth)。
三个值
- h相当于模型对训练集不含有variance的数据进行拟合产生的最佳模型。
- f相当于对测试集数据应该产生的模型
- y相当于对训练集含有噪声的数据应该产生的模型
Bias:来源于训练集中没有的,测试集中存在的data产生的。
Variance:来源于训练集里有的,但是测试集里没有的,且不应该属于ground truth的data(这里其实有个假设:就是test data认为是没有噪音的,完全是ground truth)。
三个值