0202函数的求导法则-导数与微分-高等数学

1 函数和、差、积、商的求导法则

定理1 如果函数 u = u ( x ) 及 v = v ( x ) u=u(x)及v=v(x) u=u(x)v=v(x)都在点 x x x具有导数,那么它们的和、差、积、商(除分母为零的点外)都在点 x x x具有导数,且

(1) [ u ( x ) ± v ( x ) ] ′ = u ( x ) ′ ± v ( x ) ′ [u(x)\pm v(x)]^{'}=u(x)^{'}\pm v(x)^{'} [u(x)±v(x)]=u(x)±v(x)

(2) [ u ( x ) v ( x ) ] ′ = u ( x ) ′ v ( x ) + u ( x ) v ( x ) ′ [u(x)v(x)]^{'}=u(x)^{'}v(x)+u(x)v(x)^{'} [u(x)v(x)]=u(x)v(x)+u(x)v(x)

(3) [ u ( x ) v ( x ) ] ′ = u ( x ) ′ v ( x ) − u ( x ) v ( x ) ′ v 2 ( x ) [\frac{u(x)}{v(x)}]^{'}=\frac{u(x)^{'}v(x)-u(x)v(x)^{'}}{v^2(x)} [v(x)u(x)]=v2(x)u(x)v(x)u(x)v(x)

证 明 : ( 1 ) [ u ( x ) ± v ( x ) ] ′ = lim ⁡ h → 0 u ( x + h ) ± v ( x + h ) − [ u ( x ) ± v ( x ) ] h = lim ⁡ h → 0 u ( x + h ) − u ( x ) h ± lim ⁡ h → 0 v ( x + h ) − v ( x ) h = u ( x ) ′ ± v ( x ) ′ ( 2 ) [ u ( x ) v ( x ) ] ′ = lim ⁡ h → 0 u ( x + h ) v ( x + h ) − u ( x ) v ( x ) h = lim ⁡ h → 0 u ( x + h ) v ( x + h ) − u ( x ) v ( x + h ) + u ( x ) v ( x + h ) − u ( x ) v ( x ) h = lim ⁡ h → 0 [ u ( x + h ) − u ( x ) ] v ( x + h ) + u ( x ) [ v ( x + h ) − v ( x ) ] h = lim ⁡ h → 0 u ( x + h ) − u ( x ) h ⋅ lim ⁡ h → 0 v ( x + h ) + u ( x ) lim ⁡ h → 0 v ( x + h ) − v ( x ) h = u ′ ( x ) lim ⁡ h → 0 v ( x + h ) + u ( x ) v ′ ( x ) v ( x ) 可 导 , 则 v ( x ) 连 续 lim ⁡ h → 0 v ( x + h ) = v ( x ) 所 以 [ u ( x ) ± v ( x ) ] ′ = u ( x ) ′ v ( x ) + u ( x ) v ( x ) ′ ( 3 ) [ u ( x ) v ( x ) ] ′ = lim ⁡ h → 0 u ( x + h ) v ( x + h ) − u ( x ) v ( x ) h = lim ⁡ h → 0 u ( x + h ) v ( x ) − u ( x ) v ( x + h ) v ( x + h ) v ( x ) h = lim ⁡ h → 0 [ u ( x + h ) − u ( x ) ] v ( x ) h − u ( x ) [ v ( x + h ) − v ( x ) ] h v 2 ( x ) = u ( x ) ′ v ( x ) − u ( x ) v ( x ) ′ v 2 ( x ) 证明: (1)\quad [u(x)\pm v(x)]^{'}=\lim\limits_{h\to0}{\frac{u(x+h)\pm v(x+h)-[u(x)\pm v(x)]}{h}} \\ =\lim\limits_{h\to0}{\frac{u(x+h)-u(x)}{h}}\pm \lim\limits_{h\to0}{\frac{v(x+h)-v(x)}{h}}=u(x)^{'}\pm v(x)^{'} \\ (2)\quad [u(x)v(x)]^{'}=\lim\limits_{h\to0}{\frac{u(x+h)v(x+h)-u(x)v(x)}{h}} \\ =\lim\limits_{h\to0}{\frac{u(x+h)v(x+h)-u(x)v(x+h)+u(x)v(x+h)-u(x)v(x)}{h}} \\ =\lim\limits_{h\to0}{\frac{[u(x+h)-u(x)]v(x+h)+u(x)[v(x+h)-v(x)]}{h}} \\ =\lim\limits_{h\to0}{\frac{u(x+h)-u(x)}{h}}\cdot\lim\limits_{h\to0}{v(x+h)}+u(x)\lim\limits_{h\to0}{\frac{v(x+h)-v(x)}{h}} \\ =u^{'}(x)\lim\limits_{h\to0}{v(x+h)}+u(x)v^{'}(x) \\ v(x)可导,则v(x)连续\lim\limits_{h\to0}{v(x+h)}=v(x) \\ 所以[u(x)\pm v(x)]^{'}=u(x)^{'}v(x)+u(x)v(x)^{'} \\ (3)\quad[\frac{u(x)}{v(x)}]^{'}=\lim\limits_{h\to0}{\frac{\frac{u(x+h)}{v(x+h)}-\frac{u(x)}{v(x)}}{h}}=\lim\limits_{h\to0}{\frac{u(x+h)v(x)-u(x)v(x+h)}{v(x+h)v(x)h}} \\ =\lim\limits_{h\to0}{\frac{\frac{[u(x+h)-u(x)]v(x)}{h}-\frac{u(x)[v(x+h)-v(x)]}{h}}{v^2(x)}}=\frac{u(x)^{'}v(x)-u(x)v(x)^{'}}{v^2(x)} (1)[u(x)±v(x)]=h0limhu(x+h)±v(x+h)[u(x)±v(x)]=h0limhu(x+h)u(x)±h0limhv(x+h)v(x)=u(x)±v(x)(2)[u(x)v(x)]=h0limhu(x+h)v(x+h)u(x)v(x)=h0limhu(x+h)v(x+h)u(x)v(x+h)+u(x)v(x+h)u(x)v(x)=h0limh[u(x+h)u(x)]v(x+h)+u(x)[v(x+h)v(x)]=h0limhu(x+h)u(x)h0limv(x+h)+u(x)h0limhv(x+h)v(x)=u(x)h0limv(x+h)+u(x)v(x)v(x)v(x)h0limv(x+h)=v(x)[u(x)±v(x)]=u(x)v(x)+u(x)v(x)(3)[v(x)u(x)]=h0limhv(x+h)u(x+h)v(x)u(x)=h0limv(x+h)v(x)hu(x+h)v(x)u(x)v(x+h)=h0limv2(x)h[u(x+h)u(x)]v(x)hu(x)[v(x+h)v(x)]=v2(x)u(x)v(x)u(x)v(x)

定理中的(1)(2)可推广到任意有限个可导函数的情形

( C u ) ′ = C u ′ , C 为 常 数 (Cu)^{'}=Cu^{'},C为常数 (Cu)=Cu,C

2 反函数的求导法则

定理2 如果函数 x = f ( y ) x=f(y) x=f(y)在区间 I y I_y Iy内单调、可导且 f ( y ) ≠ 0 f(y)\not=0 f(y)=0,那么它的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)在区间 I x = { x ∣ x = f ( y ) , y ∈ I y } I_x=\{x|x=f(y),y\in I_y\} Ix={xx=f(y),yIy}内也可导,且

[ f − 1 ( x ) ] = 1 f ′ ( y ) 或 d y d x = 1 d x d y [f^{-1}(x)]=\frac{1}{f^{'}(y)}或\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} [f1(x)]=f(y)1dxdy=dydx1

证 : 因 为 x = f ( x ) 在 I y 内 单 调 、 可 导 ( 连 续 ) , 则 它 的 反 函 数 y = f − 1 ( x ) 存 在 且 单 调 、 连 续 任 取 x ∈ I x , 增 量 △ x ( △ x ≠ 0 , x + △ x ∈ I x ) , 则 △ y = f − 1 ( x + △ x ) − f − 1 ( x ) ≠ 0 y = f − 1 ( x ) 连 续 , lim ⁡ △ x → 0 △ y = 0 从 而 [ f − 1 ( x ) ] = lim ⁡ △ x → 0 △ y △ x = = lim ⁡ △ y → 0 1 △ x △ y = 1 f ′ ( y ) 证:因为x=f(x)在I_y内单调、可导(连续),则它的反函数y=f^{-1}(x)存在且单调、连续 \\ 任取x\in I_x,增量\triangle x(\triangle x\not=0,x+\triangle x\in I_x),则 \\ \triangle y =f^{-1}(x+\triangle x)-f^{-1}(x)\not=0 \\ y=f^{-1}(x)连续,\lim\limits_{\triangle x\to0}{\triangle y}=0 \\ 从而[f^{-1}(x)]=\lim\limits_{\triangle x\to0}{\frac{\triangle y}{\triangle x}}= \\ =\lim\limits_{\triangle y\to0}{\frac{1}{\frac{\triangle x}{\triangle y}}}=\frac{1}{f^{'}(y)} x=f(x)Iyy=f1(x)xIx,x(x=0,x+xIx),y=f1(x+x)f1(x)=0y=f1(x)x0limy=0[f1(x)]=x0limxy==y0limyx1=f(y)1

例1: y = arcsin ⁡ x , x ∈ ( − 1 , 1 ) , 求 y ′ y=\arcsin x,x\in(-1,1),求y^{'} y=arcsinx,x(1,1),y
y = arcsin ⁡ x , x = sin ⁡ y , y ∈ ( − π 2 , π 2 ) y ′ = 1 sin ⁡ ′ ( y ) = 1 cos ⁡ y = 1 1 − x 2 即 ( arcsin ⁡ x ) ′ = 1 1 − x 2 y=\arcsin x,x=\sin y,y\in(-\frac{\pi}{2},\frac{\pi}{2}) \\ y^{'}=\frac{1}{\sin^{'}(y)}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^2}} \\ 即(\arcsin x)^{'}=\frac{1}{\sqrt{1-x^2}} y=arcsinx,x=siny,y(2π,2π)y=sin(y)1=cosy1=1x2 1(arcsinx)=1x2 1
例2: y = arccos ⁡ x , x ∈ ( − 1 , 1 ) , y ′ y=\arccos x,x\in(-1,1),y^{'} y=arccosx,x(1,1),y
y = arccos ⁡ x , x = cos ⁡ y , y ∈ ( − π 2 , π 2 ) y ′ = 1 cos ⁡ ′ ( y ) = 1 − sin ⁡ y = − 1 1 − x 2 即 ( arccos ⁡ x ) ′ = − 1 1 − x 2 y=\arccos x,x=\cos y,y\in(-\frac{\pi}{2},\frac{\pi}{2}) \\ y^{'}=\frac{1}{\cos^{'}(y)}=\frac{1}{-\sin y}=-\frac{1}{\sqrt{1-x^2}} \\ 即(\arccos x)^{'}=-\frac{1}{\sqrt{1-x^2}} y=arccosx,x=cosy,y(2π,2π)y=cos(y)1=siny1=1x2 1(arccosx)=1x2 1

同理可得 ( arctan ⁡ x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 (\arctan x)^{'}=\frac{1}{1+x^2},(arccot x)^{'}=-\frac{1}{1+x^2} (arctanx)=1+x21,(arccotx)=1+x21

arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x+\arccos x=\frac{\pi}{2} arcsinx+arccosx=2π

arctan ⁡ x + a r c c o t x = π 2 \arctan x+arccot x=\frac{\pi}{2} arctanx+arccotx=2π

3 复合函数的求导法则

如果 u = g ( x ) 在 点 x u=g(x)在点x u=g(x)x可导,而 y = f ( u ) y=f(u) y=f(u)在点 u = g ( x ) u=g(x) u=g(x)可导,那么复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]在点x可导,且其导数为:

d y d x = f ′ ( u ) g ′ ( x ) 或 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=f^{'}(u)g^{'}(x)或 \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=f(u)g(x)dxdy=dudydxdu

证 明 : 因 为 y = f ( u ) 在 点 u 出 可 导 lim ⁡ △ u → 0 △ y △ u = f ′ ( u ) 根 据 极 限 和 无 穷 小 的 关 系 有 △ y △ u = f ′ ( u ) + α ( △ u ) , lim ⁡ △ u → 0 α ( △ u ) △ u = 0 则 △ y = f ′ ( u ) △ u + α ( △ u ) △ u ( 2 − 7 ) 当 △ u = 0 时 , △ y = f ( u + △ u ) − f ( u ) = 0 , ( 2 − 7 ) 式 右 侧 也 为 0 , 等 式 也 成 立 lim ⁡ △ x → 0 △ y △ x = lim ⁡ △ x → 0 f ′ ( u ) △ u + α ( △ u ) △ u △ x = f ′ ( u ) lim ⁡ △ x → △ u △ x + lim ⁡ △ x → 0 α ( △ u ) △ u △ x 因 为 u = g ( x ) 在 点 x 可 导 , lim ⁡ △ x → △ u △ x = g ′ ( x ) 因 △ x → 0 时 , △ u → 0 , 所 以 lim ⁡ △ x → 0 α ( △ u ) = 0 证明:因为y=f(u)在点u出可导 \\ \lim\limits_{\triangle u\to0}{\frac{\triangle y}{\triangle u}}=f^{'}(u)\\ 根据极限和无穷小的关系有\quad \frac{\triangle y}{\triangle u}=f^{'}(u)+\alpha(\triangle u),\lim\limits_{\triangle u\to0}{\frac{\alpha(\triangle u)}{\triangle u}}=0 \\ 则\triangle y=f^{'}(u)\triangle u+\alpha(\triangle u)\triangle u \quad(2-7)\\ 当\triangle u=0时,\triangle y =f(u+\triangle u)-f(u)=0,(2-7)式右侧也为0,等式也成立 \\ \lim\limits_{\triangle x\to0}{\frac{\triangle y}{\triangle x}}=\lim\limits_{\triangle x\to0}{\frac{f^{'}(u)\triangle u+\alpha(\triangle u)\triangle u}{\triangle x}} \\ =f^{'}(u)\lim\limits_{\triangle x\to}{\frac{\triangle u}{\triangle x}}+\lim\limits_{\triangle x\to0}{\frac{\alpha(\triangle u)\triangle u}{\triangle x}}\\ 因为u=g(x)在点x可导,\lim\limits_{\triangle x\to}{\frac{\triangle u}{\triangle x}}=g^{'}(x) \\ 因\triangle x\to0时,\triangle u\to0,所以\lim\limits_{\triangle x\to0}{\alpha(\triangle u)}=0 \\ y=f(u)uu0limuy=f(u)uy=f(u)+α(u),u0limuα(u)=0y=f(u)u+α(u)u(27)u=0y=f(u+u)f(u)=0,(27)0x0limxy=x0limxf(u)u+α(u)u=f(u)xlimxu+x0limxα(u)uu=g(x)x,xlimxu=g(x)x0u0,x0limα(u)=0
即 d y d x = f ′ ( u ) g ′ ( x ) 即\frac{dy}{dx}=f^{'}(u)g^{'}(x) dxdy=f(u)g(x)

例3: y = ln ⁡ [ cos ⁡ ( e x ) ] , 求 d y d x y=\ln[\cos(e^x)],求\frac{dy}{dx} y=ln[cos(ex)],dxdy
解 : y ′ = 1 cos ⁡ ( e x ) ⋅ − sin ⁡ ( e x ) ⋅ e x = − e x ⋅ tan ⁡ ( e x ) 解:y^{'}=\frac{1}{\cos(e^x)}\cdot-\sin(e^x)\cdot e^x=-e^x\cdot\tan(e^x) y=cos(ex)1sin(ex)ex=extan(ex)

4 例题

例4: y = ln ⁡ [ cos ⁡ ( e x ) ] , 求 y ′ y=\ln[\cos(e^x)],求y^{'} y=ln[cos(ex)],y
解 : y ′ = 1 cos ⁡ ( e x ) ⋅ − sin ⁡ ( e x ) ⋅ e x = − e x tan ⁡ ( e x ) 解:y^{'}=\frac{1}{\cos(e^x)}\cdot-\sin(e^x)\cdot e^x=-e^x\tan(e^x) y=cos(ex)1sin(ex)ex=extan(ex)
例5: y = x 1 x , 求 y ′ y=x^{\frac{1}{x}},求y^{'} y=xx1,y
解 : y = x 1 x = e 1 x ln ⁡ x y ′ = e 1 x ln ⁡ x ⋅ ( ln ⁡ x x ) ′ = x 1 x ⋅ 1 − ln ⁡ x x 2 解:y=x^{\frac{1}{x}}=e^{\frac{1}{x}\ln x} \\ y^{'}=e^{\frac{1}{x}\ln x}\cdot(\frac{\ln x}{x})^{'}=x^{\frac{1}{x}}\cdot\frac{1-\ln x}{x^2} y=xx1=ex1lnxy=ex1lnx(xlnx)=xx1x21lnx
例6:设 f ( x 2 ) = sin ⁡ x , 求 f ′ [ f ( x ) ] , ( f [ f ( x ) ] ) ′ f(\frac{x}{2})=\sin x,求f^{'}[f(x)],(f[f(x)])^{'} f(2x)=sinx,f[f(x)](f[f(x)])
解 : f ( x ) = sin ⁡ 2 x , f ′ ( x ) = 2 cos ⁡ 2 x f ′ [ f ( x ) ] = 2 cos ⁡ ( 2 sin ⁡ 2 x ) ( f [ f ( x ) ] ) ′ = [ sin ⁡ 2 ( sin ⁡ 2 x ) ] ′ = cos ⁡ 2 ( sin ⁡ 2 x ) ⋅ 2 cos ⁡ 2 x ⋅ 2 = 4 cos ⁡ 2 x cos ⁡ 2 ( sin ⁡ 2 x ) 解:f(x)=\sin 2x,f^{'}(x)=2\cos2x \\ f^{'}[f(x)]=2\cos (2\sin 2x) \\ (f[f(x)])^{'}=[\sin 2(\sin 2x)]^{'}=\cos 2(\sin 2x)\cdot2\cos 2x\cdot2=4\cos 2x\cos2(\sin2x) :f(x)=sin2x,f(x)=2cos2xf[f(x)]=2cos(2sin2x)(f[f(x)])=[sin2(sin2x)]=cos2(sin2x)2cos2x2=4cos2xcos2(sin2x)
例7: y = sin ⁡ n x ⋅ sin ⁡ n x , 求 y ′ y=\sin nx\cdot\sin^{n}x,求y^{'} y=sinnxsinnxy
解 : y ′ = ( sin ⁡ n x ) ′ sin ⁡ n x + sin ⁡ n x ( sin ⁡ n x ) ′ = n cos ⁡ n x sin ⁡ n x + sin ⁡ n x ⋅ n sin ⁡ n − 1 x cos ⁡ x = n sin ⁡ n − 1 x ( sin ⁡ x cos ⁡ n x + cos ⁡ x sin ⁡ n x ) = n sin ⁡ n − 1 x sin ⁡ ( n + 1 ) x 解:y^{'}=(\sin nx)^{'}\sin^{n}x+\sin nx(\sin^{n}x)^{'} \\ =n\cos nx\sin^{n}x+\sin nx\cdot n\sin^{n-1}x\cos x \\ =n\sin^{n-1}x(\sin x\cos nx+\cos x\sin nx)=n\sin^{n-1}x\sin{(n+1)x} y=(sinnx)sinnx+sinnx(sinnx)=ncosnxsinnx+sinnxnsinn1xcosx=nsinn1x(sinxcosnx+cosxsinnx)=nsinn1xsin(n+1)x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值