0401不定积分的概念和性质-不定积分

1 原函数与不定积分的概念

1.1 原函数

定义1 如果在区间I上,可导函数F(x)的导航为f(x),即对任一 x ∈ I x\in I xI,都有

F ′ ( x ) = f ( x ) 或者 d F ( x ) = f ( x ) d x F^{'}(x)=f(x)或者dF(x)=f(x)dx F(x)=f(x)或者dF(x)=f(x)dx,

那么函数F(x)就称为f(x)(或者 f ( x ) d x f(x)dx f(x)dx)在区间I上的一个原函数。

1.2 原函数存在定理

原函数存在定理 如果函数f(x)在区间I上连续,那么在区间I存在可导函数F(x),使得对于任一 x ∈ I x\in I xI都有

F ′ ( x ) = f ( x ) F^{'}(x)=f(x) F(x)=f(x)

连续函数一定有原函数

  • 如果f(x)有一个原函数,那么f(x)就有无限多个原函数
  • F ( x ) + C F(x)+C F(x)+C可以表示 f ( x ) f(x) f(x)的任意一个原函数,其中C为任意常数

1.3 不定积分

定义2 在区间I上,函数 f ( x ) f(x) f(x)的带有任意常数项的原函数称为 f ( x ) (或 f ( x ) d x ) f(x)(或f(x)dx) f(x)(或f(x)dx在区间I上的不定积分,记做

∫ f ( x ) d x \int{f(x)dx} f(x)dx

其中 ∫ \int 称为积分号, f ( x ) f(x) f(x)称为被积函数, f ( x ) d x f(x)dx f(x)dx称为被积表达式,x称为积分变量。

注:

  1. F ( x ) 为 f ( x ) F(x)为f(x) F(x)f(x)的一个原函数,则 ∫ f ( x ) d x = F ( x ) + C \int{f(x)dx}=F(x)+C f(x)dx=F(x)+C,其中C为任意常数。
  2. ∫ f ( x ) d x \int{f(x)dx} f(x)dx表示 f ( x ) f(x) f(x)的任意一个原函数,是一种运算。

例2 求 ∫ 1 x d x \int \frac{1}{x}dx x1dx
解: 当 x > 0 时, ( ln ⁡ x ) ′ = 1 x , 所以 ∫ 1 x d x = ln ⁡ x + C 当 x < 0 时, ( ln ⁡ ( − x ) ) ′ = 1 − x ⋅ − 1 = 1 x , ∫ 1 x d x = ln ⁡ ( − x ) + C 综上 ∫ 1 x d x = ln ⁡ ∣ x ∣ + C 解:\\ 当x\gt0时,(\ln x)^{'}=\frac{1}{x},所以\int \frac{1}{x}dx=\ln x+C \\ 当x\lt0时,(\ln(-x))^{'}=\frac{1}{-x}\cdot-1=\frac{1}{x},\int \frac{1}{x}dx=\ln(-x)+C \\ 综上\int \frac{1}{x}dx=\ln|x|+C \\ 解:x>0时,(lnx)=x1,所以x1dx=lnx+Cx<0时,(ln(x))=x11=x1,x1dx=ln(x)+C综上x1dx=lnx+C

2 不定积分的性质

设F(x)为f(x)在区间I上的一个原函数

性质1 d [ ∫ f ( x ) d x ] d x = f ( x ) 或 d [ ∫ f ( x ) d x ] = f ( x ) d x \frac{d[\int f(x)dx]}{dx}=f(x)或 d[\int f(x)dx]=f(x)dx dxd[f(x)dx]=f(x)d[f(x)dx]=f(x)dx

性质2 ∫ F ′ ( x ) d x = F ( x ) + C 或 ∫ d F ( x ) = F ( x ) + C \int F^{'}(x)dx=F(x)+C或\int dF(x)=F(x)+C F(x)dx=F(x)+CdF(x)=F(x)+C

性质3 设函数f(x)及g(x)的原函数存在,则

∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int{[f(x)+g(x)]dx}=\int{f(x)dx}+\int{g(x)dx} [f(x)+g(x)]dx=f(x)dx+g(x)dx

证明: 上式右端求导 , [ ∫ f ( x ) d x + ∫ g ( x ) d x ] ′ = [ ∫ f ( x ) d x ] ′ + [ ∫ g ( x ) d x ] ′ = f ( x ) + g ( x ) 所以右端也是 f ( x ) + g ( x ) 的不定积分 证明:\\ 上式右端求导,[\int{f(x)dx}+\int{g(x)dx}]^{'}=[\int{f(x)dx}]^{'}+[\int{g(x)dx}]^{'}\\ =f(x)+g(x) \\ 所以右端也是f(x)+g(x)的不定积分 证明:上式右端求导,[f(x)dx+g(x)dx]=[f(x)dx]+[g(x)dx]=f(x)+g(x)所以右端也是f(x)+g(x)的不定积分

注:性质3对于有限个函数都是成立的。

性质4 设函数f(x)的原函数存在, k k k为非零常数,则

∫ k f ( x ) d x = k ∫ f ( x ) d x \int{kf(x)dx}=k\int{f(x)dx} kf(x)dx=kf(x)dx

3 基本积分表

①$\int{kdx}=kx+C $

∫ x u d x = x u + 1 u + 1 + C \int{x^udx}=\frac{x^{u+1}}{u+1}+C xudx=u+1xu+1+C ∫ d x x = ln ⁡ ∣ x ∣ + C \int{\frac{dx}{x}}=\ln|x|+C xdx=lnx+C

∫ 1 1 + x 2 d x = arctan ⁡ x + C \int{\frac{1}{1+x^2}dx}=\arctan x+C 1+x21dx=arctanx+C ∫ 1 1 − x 2 d x = arcsin ⁡ x + C \int{\frac{1}{\sqrt{1-x^2}}dx}=\arcsin x+C 1x2 1dx=arcsinx+C

∫ cos ⁡ x d x = sin ⁡ x + C \int{\cos xdx}=\sin x+C cosxdx=sinx+C ∫ sin ⁡ x d x = − cos ⁡ x + C \int{\sin xdx}=-\cos x+C sinxdx=cosx+C

∫ 1 sin ⁡ 2 x d x = ∫ sec ⁡ 2 x d x = tan ⁡ x + C \int{\frac{1}{\sin^2x}dx}=\int{\sec^2xdx}=\tan x+C sin2x1dx=sec2xdx=tanx+C ∫ 1 cos ⁡ 2 x d x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int{\frac{1}{\cos^2x}dx}=\int{\csc^2xdx}=-\cot x+C cos2x1dx=csc2xdx=cotx+C

∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int{\sec x\tan xdx}=\sec x+C secxtanxdx=secx+C ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int{\csc x\cot xdx}=-\csc x+C cscxcotxdx=cscx+C

∫ e x d x = e x + C \int{e^xdx}=e^x+C exdx=ex+C ∫ a x d x = a x ln ⁡ a + C \int{a^xdx}=\frac{a^x}{\ln a}+C axdx=lnaax+C

4 例题

例1 ∫ ( x − 1 ) 3 x 2 d x \int{\frac{(x-1)^3}{x^2}dx} x2(x1)3dx
解: ∫ ( x − 1 ) 3 x 2 d x = ∫ x 3 − 3 x 2 + 3 x − 1 x 2 = ∫ x d x − ∫ 3 d x + ∫ 3 x − ∫ 1 x 2 = 1 2 x 2 − 3 x + 3 ln ⁡ ∣ x ∣ + 1 x + C 解:\\ \int{\frac{(x-1)^3}{x^2}dx}=\int{\frac{x^3-3x^2+3x-1}{x^2}}\\ =\int{xdx}-\int{3dx}+\int{\frac{3}{x}}-\int{\frac{1}{x^2}}\\ =\frac{1}{2}x^2-3x+3\ln|x|+\frac{1}{x}+C 解:x2(x1)3dx=x2x33x2+3x1=xdx3dx+x3x21=21x23x+3lnx+x1+C
例2 ∫ 2 x 4 + x 2 + 3 x 2 + 1 d x \int{\frac{2x^4+x^2+3}{x^2+1}dx} x2+12x4+x2+3dx
解: 利用多项式相除,得 2 x 2 + 1 , 余 4 , 有 ∫ 2 x 4 + x 2 + 3 x 2 + 1 d x = ∫ ( 2 x 2 − 1 + 4 x 2 + 1 ) d x = ∫ 2 x 2 d x − ∫ 1 d x + ∫ 4 x 2 + 1 d x = 2 x 3 3 − x + 4 arctan ⁡ x + C 解:\\ 利用多项式相除,得2x^2+1,余4,有\\ \int{\frac{2x^4+x^2+3}{x^2+1}dx}=\int{(2x^2-1+\frac{4}{x^2+1})dx}\\ =\int{2x^2dx}-\int{1dx}+\int{\frac{4}{x^2+1}dx}=\frac{2x^3}{3}-x+4\arctan x+C 解:利用多项式相除,得2x2+1,4,x2+12x4+x2+3dx=(2x21+x2+14)dx=2x2dx1dx+x2+14dx=32x3x+4arctanx+C

多项式相除,如下图4-1所示:在这里插入图片描述

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P184~p193.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p27.

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值