文章目录
1 有理函数的积分
1.1 有理函数
两个多项式的商 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x)称为有理函数,又称有理分式。分子多项式和分母多项式之间没有公因式。
真分式:分子多项式 P ( x ) P(x) P(x)的次数小于分母多项式 Q ( x ) Q(x) Q(x)的次数。
假分式:分子多项式 P ( x ) P(x) P(x)的次数大于等于分母多项式 Q ( x ) Q(x) Q(x)的次数。
下面主要讨论真分式积分,利用多项式的除法,可以将假分式->真分式。
1.2 有理真分式的积分
1.2.1 几种已知类型
-
∫ 1 a x + b d x = 1 a ln ∣ a x + b ∣ + C \int{\frac{1}{ax+b}dx}=\frac{1}{a}\ln|ax+b|+C ∫ax+b1dx=a1ln∣ax+b∣+C
-
∫ 1 ( a x + b ) n d x = − 1 a ( n − 1 ) ( a x + b ) − n + 1 + C \int{\frac{1}{(ax+b)^n}dx}=\frac{-1}{a(n-1)}(ax+b)^{-n+1}+C ∫(ax+b)n1dx=a(n−1)−1(ax+b)−n+1+C
-
∫ x a 2 + x 2 d x = 1 2 ln ( a 2 + x 2 ) + C \int{\frac{x}{a^2+x^2}dx}=\frac{1}{2}\ln(a^2+x^2)+C ∫a2+x2xdx=21ln(a2+x2)+C
-
∫ 1 a 2 + x 2 d x = 1 a arctan x a + C \int{\frac{1}{a^2+x^2}dx}=\frac{1}{a}\arctan \frac{x}{a}+C ∫a2+x21dx=a1arctanax+C
-
∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C ∫x2−a21dx=2a1ln∣x+ax−a∣+C
-
∫ 1 a x 2 + b x + c d x = { 2 4 a c − b 2 arctan 2 a x + b 4 a c − b 2 + C , b 2 < 4 a c 1 b 2 − 4 a c ln ∣ 2 a x + b − b 2 − 4 a c 2 a x + b + b 2 − 4 a c ∣ + C , b 2 > 4 a c \int{\frac{1}{ax^2+bx+c}dx}= \begin{cases} \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}}+C,b^2\lt4ac\\ \frac{1}{\sqrt{b^2-4ac}}\ln|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}|+C,b^2\gt4ac\\ \end{cases} ∫ax2+bx+c1dx={4ac−b22arctan4ac−b22ax+b+C,b2<4acb2−4ac1ln∣2ax+b+b2−4ac2ax+b−b2−4ac∣+C,b2>4ac
-
∫ x a x 2 + b x + c d x = 1 2 a ln ∣ a x 2 + b x + c ∣ − b 2 a ∫ 1 a x 2 + b x + c d x \int{\frac{x}{ax^2+bx+c}dx}=\frac{1}{2a}\ln|ax^2+bx+c|-\frac{b}{2a}\int{\frac{1}{ax^2+bx+c}dx} ∫ax2+bx+cxdx=2a1ln∣ax2+bx+c∣−2ab∫ax2+bx+c1dx
1.2.2 真分式的分解
对于真分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),如果分母可分解为连个多项式乘积
Q ( x ) = Q 1 ( x ) Q 2 ( x ) Q(x)=Q_1(x)Q_2(x) Q(x)=Q1(x)Q2(x)
且 Q 1 ( x ) 与 Q 2 ( x ) Q_1(x)与Q_2(x) Q1(x)与Q2(x)没有公因式,他们真分式可以拆分为两个真分式之和
P ( x ) Q ( x ) = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) \frac{P(x)}{Q(x)}=\frac{P_1(x)}{Q_1(x)}+\frac{P_2(x)}{Q_2(x)} Q(x)P(x)=Q1(x)P1(x)+Q2(x)P2(x)
上述步骤称为把真分式化成部分分式之和。
真分式化为部分分数之和一般公式:
真分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),其中 Q ( x ) = b 0 ( x − a ) α ⋯ ( x 2 + p x + q ) λ Q(x)=b_0(x-a)^\alpha\cdots(x^2+px+q)^\lambda Q(x)=b0(x−a)α⋯(x2+px+q)λ,则
其中 p 2 − 4 q < 0 p^2-4q\lt0 p2−4q<0
P ( x ) Q ( x ) = A 1 ( x − a ) α + A 2 ( x − a ) α − 1 + ⋯ + A α ( x − a ) ( α 项 ) + ⋯ + B 1 ( x 2 + p x + q ) λ + B 2 ( x 2 + p x + q ) λ − 1 + ⋯ + B λ ( x 2 + p x + q ) ( λ 项 ) \frac{P(x)}{Q(x)}=\frac{A_1}{(x-a)^\alpha}+\frac{A_2}{(x-a)^{\alpha-1}}+\cdots+\frac{A_\alpha}{(x-a)}(\alpha项) \\ +\cdots\\ +\frac{B_1}{(x^2+px+q)^\lambda}+\frac{B_2}{(x^2+px+q)^{\lambda-1}}+\cdots+\frac{B_\lambda}{(x^2+px+q)}(\lambda项) Q(x)P(x)=(x−a)αA1+(x−a)α−1A2+⋯+(x−a)Aα(α项)+⋯+(x2+px+q)λB1+(x2+px+q)λ−1B2+⋯+(x2+px+q)Bλ(λ项)
其中 A i , B i A_i,B_i Ai,Bi都不为常数
总结:
- 分母有哪些因子,就有以该因子的幂为分母的部分分式(幂次=项数,降幂排列)
- 分母为一次多项式的幂,分子为常数;分母为二次多项式的幂,分子为一次多项式。
- 右端通分后,分子与 P ( x ) P(x) P(x)比较,可求出全部常数。
1.3 例题
例1 求
∫
x
+
1
x
2
−
5
x
+
6
d
x
\int{\frac{x+1}{x^2-5x+6}dx}
∫x2−5x+6x+1dx
解:
∫
x
+
1
x
2
−
5
x
+
6
d
x
=
∫
(
A
x
−
2
+
B
x
−
3
)
d
x
A
+
B
=
1
,
−
3
A
−
2
B
=
1
,
则
A
=
−
3
,
B
=
4
∫
x
+
1
x
2
−
5
x
+
6
d
x
=
∫
(
−
3
x
−
2
+
4
x
−
3
)
d
x
=
4
ln
∣
x
−
3
∣
−
3
ln
∣
x
−
2
∣
+
C
解:\int{\frac{x+1}{x^2-5x+6}dx}=\int{(\frac{A}{x-2}+\frac{B}{x-3})}dx\\ A+B=1,-3A-2B=1,则A=-3,B=4 \\ \int{\frac{x+1}{x^2-5x+6}dx}=\int{(\frac{-3}{x-2}+\frac{4}{x-3})dx}=4\ln|x-3|-3\ln|x-2|+C
解:∫x2−5x+6x+1dx=∫(x−2A+x−3B)dxA+B=1,−3A−2B=1,则A=−3,B=4∫x2−5x+6x+1dx=∫(x−2−3+x−34)dx=4ln∣x−3∣−3ln∣x−2∣+C
例2 求
∫
1
(
2
x
+
1
)
(
x
2
+
1
)
d
x
\int{\frac{1}{(2x+1)(x^2+1)}dx}
∫(2x+1)(x2+1)1dx
解:
I
=
∫
1
(
2
x
+
1
)
(
x
2
+
1
)
d
x
=
∫
(
A
2
x
+
1
+
B
x
+
c
x
2
+
1
)
d
x
=
∫
(
A
+
2
B
)
x
2
+
(
B
+
2
C
)
x
+
A
+
C
(
2
x
+
1
)
(
x
2
+
1
)
d
x
所以
A
+
2
B
=
0
,
B
+
2
C
=
0
,
A
+
C
=
1
,
解得
A
=
4
5
,
B
=
−
2
5
,
C
=
1
5
I
=
∫
(
4
5
2
x
+
1
+
−
2
5
x
+
1
5
x
2
+
1
)
d
x
=
2
5
ln
∣
2
x
+
1
∣
−
1
5
ln
∣
x
2
+
1
∣
+
1
5
arctan
x
+
C
解:I=\int{\frac{1}{(2x+1)(x^2+1)}dx}=\int{(\frac{A}{2x+1}+\frac{Bx+c}{x^2+1})dx} =\int{\frac{(A+2B)x^2+(B+2C)x+A+C}{(2x+1)(x^2+1)}dx}\\ 所以A+2B=0,B+2C=0,A+C=1,解得A=\frac{4}{5},B=-\frac{2}{5},C=\frac{1}{5}\\ I = \int{(\frac{\frac{4}{5}}{2x+1}+\frac{-\frac{2}{5}x+\frac{1}{5}}{x^2+1})dx}\\ =\frac{2}{5}\ln|2x+1|-\frac{1}{5}\ln|x^2+1|+\frac{1}{5}\arctan x+C
解:I=∫(2x+1)(x2+1)1dx=∫(2x+1A+x2+1Bx+c)dx=∫(2x+1)(x2+1)(A+2B)x2+(B+2C)x+A+Cdx所以A+2B=0,B+2C=0,A+C=1,解得A=54,B=−52,C=51I=∫(2x+154+x2+1−52x+51)dx=52ln∣2x+1∣−51ln∣x2+1∣+51arctanx+C
例3 求
∫
2
x
2
+
7
x
−
1
x
3
+
x
2
−
x
−
1
d
x
\int{\frac{2x^2+7x-1}{x^3+x^2-x-1}dx}
∫x3+x2−x−12x2+7x−1dx
解:
I
=
∫
2
x
2
+
7
x
−
1
x
3
+
x
2
−
x
−
1
d
x
=
∫
2
x
2
+
7
x
−
1
(
x
+
1
)
2
(
x
−
1
)
d
x
=
∫
[
A
(
x
+
1
)
2
+
B
x
+
1
+
C
x
−
1
]
d
x
(
B
+
C
)
x
2
+
(
A
+
2
C
)
x
+
(
−
A
−
B
+
C
)
=
2
x
2
+
7
x
−
1
,
A
=
3
,
B
=
0
,
C
=
2
I
=
∫
[
3
(
x
+
1
)
2
+
2
x
−
1
]
d
x
=
−
3
x
+
1
+
2
ln
∣
x
−
1
∣
+
C
解:I = \int{\frac{2x^2+7x-1}{x^3+x^2-x-1}dx}=\int{\frac{2x^2+7x-1}{(x+1)^2(x-1)}dx}\\ =\int{[\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-1}]dx}\\ (B+C)x^2+(A+2C)x+(-A-B+C)=2x^2+7x-1,A=3,B=0,C=2\\ I =\int{[\frac{3}{(x+1)^2}+\frac{2}{x-1}]dx}=-\frac{3}{x+1}+2\ln|x-1|+C
解:I=∫x3+x2−x−12x2+7x−1dx=∫(x+1)2(x−1)2x2+7x−1dx=∫[(x+1)2A+x+1B+x−1C]dx(B+C)x2+(A+2C)x+(−A−B+C)=2x2+7x−1,A=3,B=0,C=2I=∫[(x+1)23+x−12]dx=−x+13+2ln∣x−1∣+C
例4 求
∫
1
x
4
(
x
2
+
1
)
d
x
\int{\frac{1}{x^4(x^2+1)}dx}
∫x4(x2+1)1dx
解:
∫
1
x
4
(
x
2
+
1
)
d
x
=
∫
1
−
x
4
+
x
4
x
4
(
x
2
+
1
)
d
x
=
∫
(
1
x
4
−
1
x
2
+
1
x
2
+
1
)
d
x
=
−
1
3
x
3
+
1
x
+
arctan
x
+
C
解:\int{\frac{1}{x^4(x^2+1)}dx}=\int{\frac{1-x^4+x^4}{x^4(x^2+1)}dx}\\ =\int{(\frac{1}{x^4}-\frac{1}{x^2}+\frac{1}{x^2+1})dx}=-\frac{1}{3x^3}+\frac{1}{x}+\arctan x+C
解:∫x4(x2+1)1dx=∫x4(x2+1)1−x4+x4dx=∫(x41−x21+x2+11)dx=−3x31+x1+arctanx+C
2 可华为有理函数的积分
2.1 三角函数有理式
万能公式:
- sin x = 2 tan x 2 1 + tan 2 x 2 \sin x=\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
- cos x = 1 − tan 2 x 2 1 + tan 2 x 2 \cos x=\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}} cosx=1+tan22x1−tan22x
- tan x = 2 tan x 2 1 − tan 2 x 2 \tan x=\frac{2\tan\frac{x}{2}}{1-\tan^2\frac{x}{2}} tanx=1−tan22x2tan2x
令 u = tan x 2 ( − π < x < π ) u=\tan\frac{x}{2}(-\pi\lt x\lt\pi) u=tan2x(−π<x<π),有
- sin x = 2 u 1 + u 2 \sin x=\frac{2u}{1+u^2} sinx=1+u22u
- cos x = 1 − u 2 1 + u 2 \cos x=\frac{1-u^2}{1+u^2} cosx=1+u21−u2
- tan x = 2 u 1 − u 2 \tan x=\frac{2u}{1-u^2} tanx=1−u22u
- d x = 2 1 + u 2 d u dx=\frac{2}{1+u^2}du dx=1+u22du
例5 求
∫
1
+
sin
x
sin
x
(
1
+
cos
x
)
d
x
\int{\frac{1+\sin x}{\sin x(1+\cos x)}dx}
∫sinx(1+cosx)1+sinxdx
解:令
u
=
tan
x
2
(
−
π
<
x
<
π
)
,
d
x
=
2
d
u
1
+
u
2
I
=
∫
1
+
sin
x
sin
x
(
1
+
cos
x
)
d
x
=
∫
(
1
+
2
u
1
+
u
2
)
2
d
u
1
+
u
2
(
2
u
1
+
u
2
)
(
1
+
1
−
u
2
1
+
u
2
)
=
∫
(
1
2
u
+
1
+
1
2
u
)
d
u
=
1
4
u
2
+
u
+
1
2
ln
∣
u
∣
+
C
I
=
1
4
tan
2
x
2
+
tan
x
2
+
1
2
ln
∣
tan
x
2
∣
+
C
解:令u=\tan\frac{x}{2}(-\pi\lt x\lt \pi),dx=\frac{2du}{1+u^2} \\ I =\int{\frac{1+\sin x}{\sin x(1+\cos x)}dx}=\int{\frac{(1+\frac{2u}{1+u^2})\frac{2du}{1+u^2}}{(\frac{2u}{1+u^2})(1+\frac{1-u^2}{1+u^2})}}\\ =\int{(\frac{1}{2}u+1+\frac{1}{2u})du}=\frac{1}{4}u^2+u+\frac{1}{2}\ln|u|+C\\ I=\frac{1}{4}\tan^2\frac{x}{2}+\tan\frac{x}{2}+\frac{1}{2}\ln|\tan\frac{x}{2}|+C
解:令u=tan2x(−π<x<π),dx=1+u22duI=∫sinx(1+cosx)1+sinxdx=∫(1+u22u)(1+1+u21−u2)(1+1+u22u)1+u22du=∫(21u+1+2u1)du=41u2+u+21ln∣u∣+CI=41tan22x+tan2x+21ln∣tan2x∣+C
2.2 根式代换
例6 求
∫
x
−
1
x
d
x
\int{\frac{\sqrt{x-1}}{x}dx}
∫xx−1dx
解:令
x
−
1
=
t
,
x
=
t
2
+
1
,
d
x
=
2
t
d
t
I
=
∫
x
−
1
x
d
x
=
∫
t
t
2
+
1
2
t
d
t
=
2
t
−
2
arctan
t
+
C
=
2
x
−
1
−
2
arctan
x
−
1
+
C
解:令\sqrt{x-1}=t,x=t^2+1,dx=2tdt\\ I=\int{\frac{\sqrt{x-1}}{x}dx}=\int{\frac{t}{t^2+1}2tdt}\\ =2t-2\arctan t+C=2\sqrt{x-1}-2\arctan\sqrt{x-1}+C
解:令x−1=t,x=t2+1,dx=2tdtI=∫xx−1dx=∫t2+1t2tdt=2t−2arctant+C=2x−1−2arctanx−1+C
例7 求
∫
1
1
+
x
+
2
3
d
x
\int{\frac{1}{1+\sqrt[3]{x+2}}dx}
∫1+3x+21dx
解:令
x
+
2
3
=
t
,
x
=
t
3
−
2
,
d
x
=
3
t
2
I
=
∫
1
1
+
x
+
2
3
d
x
=
∫
3
t
2
1
+
t
d
t
=
3
2
t
2
−
3
t
+
3
ln
∣
t
+
1
∣
+
C
=
3
2
(
x
+
2
)
2
3
−
3
x
+
2
3
+
3
ln
∣
x
+
2
3
∣
+
C
解:令\sqrt[3]{x+2}=t,x=t^3-2,dx=3t^2\\ I=\int{\frac{1}{1+\sqrt[3]{x+2}}dx}=\int{\frac{3t^2}{1+t}dt}\\ =\frac{3}{2}t^2-3t+3\ln|t+1|+C=\frac{3}{2}(x+2)^{\frac{2}{3}}-3\sqrt[3]{x+2}+3\ln|\sqrt[3]{x+2}|+C
解:令3x+2=t,x=t3−2,dx=3t2I=∫1+3x+21dx=∫1+t3t2dt=23t2−3t+3ln∣t+1∣+C=23(x+2)32−33x+2+3ln∣3x+2∣+C
例8 求
∫
d
x
(
x
+
1
)
2
(
x
−
1
)
4
3
d
x
\int{\frac{dx}{\sqrt[3]{(x+1)^2(x-1)^4}}dx}
∫3(x+1)2(x−1)4dxdx
解:
I
=
∫
d
x
(
x
+
1
)
2
(
x
−
1
)
4
3
d
x
=
∫
d
x
(
x
2
−
1
)
x
−
1
x
+
1
3
令
x
−
1
x
+
1
3
=
t
,
x
=
1
+
t
3
1
−
t
3
,
d
x
=
6
t
2
(
t
3
−
1
)
2
d
t
I
=
∫
6
t
2
d
t
(
t
3
−
1
)
2
⋅
1
(
1
+
t
3
1
−
t
3
)
2
−
1
⋅
1
t
=
−
3
2
t
+
C
=
−
3
2
x
+
1
x
−
1
3
+
C
解:I =\int{\frac{dx}{\sqrt[3]{(x+1)^2(x-1)^4}}dx}=\int{\frac{dx}{(x^2-1)\sqrt[3]{\frac{x-1}{x+1}}}}\\ 令\sqrt[3]{\frac{x-1}{x+1}}=t,x=\frac{1+t^3}{1-t^3},dx=\frac{6t^2}{(t^3-1)^2}dt\\ I=\int{\frac{6t^2dt}{(t^3-1)^2}\cdot\frac{1}{(\frac{1+t^3}{1-t^3})^2-1}\cdot\frac{1}{t}}\\ =-\frac{3}{2t}+C=-\frac{3}{2}\sqrt[3]{\frac{x+1}{x-1}}+C
解:I=∫3(x+1)2(x−1)4dxdx=∫(x2−1)3x+1x−1dx令3x+1x−1=t,x=1−t31+t3,dx=(t3−1)26t2dtI=∫(t3−1)26t2dt⋅(1−t31+t3)2−11⋅t1=−2t3+C=−233x−1x+1+C
后记
❓QQ:806797785
⭐️文档笔记地址:https://gitee.com/gaogzhen/math
参考:
[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P213~p218.
[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p30.
489

被折叠的 条评论
为什么被折叠?



