0404有理函数的积分-不定积分

1 有理函数的积分

1.1 有理函数

两个多项式的商 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x)称为有理函数,又称有理分式。分子多项式和分母多项式之间没有公因式。

真分式:分子多项式 P ( x ) P(x) P(x)的次数小于分母多项式 Q ( x ) Q(x) Q(x)的次数。

假分式:分子多项式 P ( x ) P(x) P(x)的次数大于等于分母多项式 Q ( x ) Q(x) Q(x)的次数。

下面主要讨论真分式积分,利用多项式的除法,可以将假分式->真分式。

1.2 有理真分式的积分

1.2.1 几种已知类型
  1. ∫ 1 a x + b d x = 1 a ln ⁡ ∣ a x + b ∣ + C \int{\frac{1}{ax+b}dx}=\frac{1}{a}\ln|ax+b|+C ax+b1dx=a1lnax+b+C

  2. ∫ 1 ( a x + b ) n d x = − 1 a ( n − 1 ) ( a x + b ) − n + 1 + C \int{\frac{1}{(ax+b)^n}dx}=\frac{-1}{a(n-1)}(ax+b)^{-n+1}+C (ax+b)n1dx=a(n1)1(ax+b)n+1+C

  3. ∫ x a 2 + x 2 d x = 1 2 ln ⁡ ( a 2 + x 2 ) + C \int{\frac{x}{a^2+x^2}dx}=\frac{1}{2}\ln(a^2+x^2)+C a2+x2xdx=21ln(a2+x2)+C

  4. ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C \int{\frac{1}{a^2+x^2}dx}=\frac{1}{a}\arctan \frac{x}{a}+C a2+x21dx=a1arctanax+C

  5. ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C x2a21dx=2a1lnx+axa+C

  6. ∫ 1 a x 2 + b x + c d x = { 2 4 a c − b 2 arctan ⁡ 2 a x + b 4 a c − b 2 + C , b 2 < 4 a c 1 b 2 − 4 a c ln ⁡ ∣ 2 a x + b − b 2 − 4 a c 2 a x + b + b 2 − 4 a c ∣ + C , b 2 > 4 a c \int{\frac{1}{ax^2+bx+c}dx}= \begin{cases} \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}}+C,b^2\lt4ac\\ \frac{1}{\sqrt{b^2-4ac}}\ln|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}|+C,b^2\gt4ac\\ \end{cases} ax2+bx+c1dx={4acb2 2arctan4acb2 2ax+b+C,b2<4acb24ac 1ln2ax+b+b24ac 2ax+bb24ac +C,b2>4ac

  7. ∫ x a x 2 + b x + c d x = 1 2 a ln ⁡ ∣ a x 2 + b x + c ∣ − b 2 a ∫ 1 a x 2 + b x + c d x \int{\frac{x}{ax^2+bx+c}dx}=\frac{1}{2a}\ln|ax^2+bx+c|-\frac{b}{2a}\int{\frac{1}{ax^2+bx+c}dx} ax2+bx+cxdx=2a1lnax2+bx+c2abax2+bx+c1dx

1.2.2 真分式的分解

对于真分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),如果分母可分解为连个多项式乘积

Q ( x ) = Q 1 ( x ) Q 2 ( x ) Q(x)=Q_1(x)Q_2(x) Q(x)=Q1(x)Q2(x)

Q 1 ( x ) 与 Q 2 ( x ) Q_1(x)与Q_2(x) Q1(x)Q2(x)没有公因式,他们真分式可以拆分为两个真分式之和

P ( x ) Q ( x ) = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) \frac{P(x)}{Q(x)}=\frac{P_1(x)}{Q_1(x)}+\frac{P_2(x)}{Q_2(x)} Q(x)P(x)=Q1(x)P1(x)+Q2(x)P2(x)

上述步骤称为把真分式化成部分分式之和。

真分式化为部分分数之和一般公式:

真分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),其中 Q ( x ) = b 0 ( x − a ) α ⋯ ( x 2 + p x + q ) λ Q(x)=b_0(x-a)^\alpha\cdots(x^2+px+q)^\lambda Q(x)=b0(xa)α(x2+px+q)λ,则

其中 p 2 − 4 q < 0 p^2-4q\lt0 p24q<0
P ( x ) Q ( x ) = A 1 ( x − a ) α + A 2 ( x − a ) α − 1 + ⋯ + A α ( x − a ) ( α 项 ) + ⋯ + B 1 ( x 2 + p x + q ) λ + B 2 ( x 2 + p x + q ) λ − 1 + ⋯ + B λ ( x 2 + p x + q ) ( λ 项 ) \frac{P(x)}{Q(x)}=\frac{A_1}{(x-a)^\alpha}+\frac{A_2}{(x-a)^{\alpha-1}}+\cdots+\frac{A_\alpha}{(x-a)}(\alpha项) \\ +\cdots\\ +\frac{B_1}{(x^2+px+q)^\lambda}+\frac{B_2}{(x^2+px+q)^{\lambda-1}}+\cdots+\frac{B_\lambda}{(x^2+px+q)}(\lambda项) Q(x)P(x)=(xa)αA1+(xa)α1A2++(xa)Aα(α)++(x2+px+q)λB1+(x2+px+q)λ1B2++(x2+px+q)Bλ(λ)
其中 A i , B i A_i,B_i Ai,Bi都不为常数

总结:

  • 分母有哪些因子,就有以该因子的幂为分母的部分分式(幂次=项数,降幂排列)
  • 分母为一次多项式的幂,分子为常数;分母为二次多项式的幂,分子为一次多项式。
  • 右端通分后,分子与 P ( x ) P(x) P(x)比较,可求出全部常数。

1.3 例题

例1 求 ∫ x + 1 x 2 − 5 x + 6 d x \int{\frac{x+1}{x^2-5x+6}dx} x25x+6x+1dx
解: ∫ x + 1 x 2 − 5 x + 6 d x = ∫ ( A x − 2 + B x − 3 ) d x A + B = 1 , − 3 A − 2 B = 1 , 则 A = − 3 , B = 4 ∫ x + 1 x 2 − 5 x + 6 d x = ∫ ( − 3 x − 2 + 4 x − 3 ) d x = 4 ln ⁡ ∣ x − 3 ∣ − 3 ln ⁡ ∣ x − 2 ∣ + C 解:\int{\frac{x+1}{x^2-5x+6}dx}=\int{(\frac{A}{x-2}+\frac{B}{x-3})}dx\\ A+B=1,-3A-2B=1,则A=-3,B=4 \\ \int{\frac{x+1}{x^2-5x+6}dx}=\int{(\frac{-3}{x-2}+\frac{4}{x-3})dx}=4\ln|x-3|-3\ln|x-2|+C 解:x25x+6x+1dx=(x2A+x3B)dxA+B=1,3A2B=1,A=3B=4x25x+6x+1dx=(x23+x34)dx=4lnx3∣3lnx2∣+C
例2 求 ∫ 1 ( 2 x + 1 ) ( x 2 + 1 ) d x \int{\frac{1}{(2x+1)(x^2+1)}dx} (2x+1)(x2+1)1dx
解: I = ∫ 1 ( 2 x + 1 ) ( x 2 + 1 ) d x = ∫ ( A 2 x + 1 + B x + c x 2 + 1 ) d x = ∫ ( A + 2 B ) x 2 + ( B + 2 C ) x + A + C ( 2 x + 1 ) ( x 2 + 1 ) d x 所以 A + 2 B = 0 , B + 2 C = 0 , A + C = 1 , 解得 A = 4 5 , B = − 2 5 , C = 1 5 I = ∫ ( 4 5 2 x + 1 + − 2 5 x + 1 5 x 2 + 1 ) d x = 2 5 ln ⁡ ∣ 2 x + 1 ∣ − 1 5 ln ⁡ ∣ x 2 + 1 ∣ + 1 5 arctan ⁡ x + C 解:I=\int{\frac{1}{(2x+1)(x^2+1)}dx}=\int{(\frac{A}{2x+1}+\frac{Bx+c}{x^2+1})dx} =\int{\frac{(A+2B)x^2+(B+2C)x+A+C}{(2x+1)(x^2+1)}dx}\\ 所以A+2B=0,B+2C=0,A+C=1,解得A=\frac{4}{5},B=-\frac{2}{5},C=\frac{1}{5}\\ I = \int{(\frac{\frac{4}{5}}{2x+1}+\frac{-\frac{2}{5}x+\frac{1}{5}}{x^2+1})dx}\\ =\frac{2}{5}\ln|2x+1|-\frac{1}{5}\ln|x^2+1|+\frac{1}{5}\arctan x+C 解:I=(2x+1)(x2+1)1dx=(2x+1A+x2+1Bx+c)dx=(2x+1)(x2+1)(A+2B)x2+(B+2C)x+A+Cdx所以A+2B=0,B+2C=0,A+C=1,解得A=54,B=52,C=51I=(2x+154+x2+152x+51)dx=52ln∣2x+1∣51lnx2+1∣+51arctanx+C
例3 求 ∫ 2 x 2 + 7 x − 1 x 3 + x 2 − x − 1 d x \int{\frac{2x^2+7x-1}{x^3+x^2-x-1}dx} x3+x2x12x2+7x1dx
解: I = ∫ 2 x 2 + 7 x − 1 x 3 + x 2 − x − 1 d x = ∫ 2 x 2 + 7 x − 1 ( x + 1 ) 2 ( x − 1 ) d x = ∫ [ A ( x + 1 ) 2 + B x + 1 + C x − 1 ] d x ( B + C ) x 2 + ( A + 2 C ) x + ( − A − B + C ) = 2 x 2 + 7 x − 1 , A = 3 , B = 0 , C = 2 I = ∫ [ 3 ( x + 1 ) 2 + 2 x − 1 ] d x = − 3 x + 1 + 2 ln ⁡ ∣ x − 1 ∣ + C 解:I = \int{\frac{2x^2+7x-1}{x^3+x^2-x-1}dx}=\int{\frac{2x^2+7x-1}{(x+1)^2(x-1)}dx}\\ =\int{[\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-1}]dx}\\ (B+C)x^2+(A+2C)x+(-A-B+C)=2x^2+7x-1,A=3,B=0,C=2\\ I =\int{[\frac{3}{(x+1)^2}+\frac{2}{x-1}]dx}=-\frac{3}{x+1}+2\ln|x-1|+C 解:I=x3+x2x12x2+7x1dx=(x+1)2(x1)2x2+7x1dx=[(x+1)2A+x+1B+x1C]dx(B+C)x2+(A+2C)x+(AB+C)=2x2+7x1,A=3,B=0,C=2I=[(x+1)23+x12]dx=x+13+2lnx1∣+C
例4 求 ∫ 1 x 4 ( x 2 + 1 ) d x \int{\frac{1}{x^4(x^2+1)}dx} x4(x2+1)1dx
解: ∫ 1 x 4 ( x 2 + 1 ) d x = ∫ 1 − x 4 + x 4 x 4 ( x 2 + 1 ) d x = ∫ ( 1 x 4 − 1 x 2 + 1 x 2 + 1 ) d x = − 1 3 x 3 + 1 x + arctan ⁡ x + C 解:\int{\frac{1}{x^4(x^2+1)}dx}=\int{\frac{1-x^4+x^4}{x^4(x^2+1)}dx}\\ =\int{(\frac{1}{x^4}-\frac{1}{x^2}+\frac{1}{x^2+1})dx}=-\frac{1}{3x^3}+\frac{1}{x}+\arctan x+C 解:x4(x2+1)1dx=x4(x2+1)1x4+x4dx=(x41x21+x2+11)dx=3x31+x1+arctanx+C

2 可华为有理函数的积分

2.1 三角函数有理式

万能公式:

  1. sin ⁡ x = 2 tan ⁡ x 2 1 + tan ⁡ 2 x 2 \sin x=\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
  2. cos ⁡ x = 1 − tan ⁡ 2 x 2 1 + tan ⁡ 2 x 2 \cos x=\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}} cosx=1+tan22x1tan22x
  3. tan ⁡ x = 2 tan ⁡ x 2 1 − tan ⁡ 2 x 2 \tan x=\frac{2\tan\frac{x}{2}}{1-\tan^2\frac{x}{2}} tanx=1tan22x2tan2x

u = tan ⁡ x 2 ( − π < x < π ) u=\tan\frac{x}{2}(-\pi\lt x\lt\pi) u=tan2x(π<x<π),有

  1. sin ⁡ x = 2 u 1 + u 2 \sin x=\frac{2u}{1+u^2} sinx=1+u22u
  2. cos ⁡ x = 1 − u 2 1 + u 2 \cos x=\frac{1-u^2}{1+u^2} cosx=1+u21u2
  3. tan ⁡ x = 2 u 1 − u 2 \tan x=\frac{2u}{1-u^2} tanx=1u22u
  4. d x = 2 1 + u 2 d u dx=\frac{2}{1+u^2}du dx=1+u22du

例5 求 ∫ 1 + sin ⁡ x sin ⁡ x ( 1 + cos ⁡ x ) d x \int{\frac{1+\sin x}{\sin x(1+\cos x)}dx} sinx(1+cosx)1+sinxdx
解:令 u = tan ⁡ x 2 ( − π < x < π ) , d x = 2 d u 1 + u 2 I = ∫ 1 + sin ⁡ x sin ⁡ x ( 1 + cos ⁡ x ) d x = ∫ ( 1 + 2 u 1 + u 2 ) 2 d u 1 + u 2 ( 2 u 1 + u 2 ) ( 1 + 1 − u 2 1 + u 2 ) = ∫ ( 1 2 u + 1 + 1 2 u ) d u = 1 4 u 2 + u + 1 2 ln ⁡ ∣ u ∣ + C I = 1 4 tan ⁡ 2 x 2 + tan ⁡ x 2 + 1 2 ln ⁡ ∣ tan ⁡ x 2 ∣ + C 解:令u=\tan\frac{x}{2}(-\pi\lt x\lt \pi),dx=\frac{2du}{1+u^2} \\ I =\int{\frac{1+\sin x}{\sin x(1+\cos x)}dx}=\int{\frac{(1+\frac{2u}{1+u^2})\frac{2du}{1+u^2}}{(\frac{2u}{1+u^2})(1+\frac{1-u^2}{1+u^2})}}\\ =\int{(\frac{1}{2}u+1+\frac{1}{2u})du}=\frac{1}{4}u^2+u+\frac{1}{2}\ln|u|+C\\ I=\frac{1}{4}\tan^2\frac{x}{2}+\tan\frac{x}{2}+\frac{1}{2}\ln|\tan\frac{x}{2}|+C 解:令u=tan2x(π<x<π),dx=1+u22duI=sinx(1+cosx)1+sinxdx=(1+u22u)(1+1+u21u2)(1+1+u22u)1+u22du=(21u+1+2u1)du=41u2+u+21lnu+CI=41tan22x+tan2x+21lntan2x+C

2.2 根式代换

例6 求 ∫ x − 1 x d x \int{\frac{\sqrt{x-1}}{x}dx} xx1 dx
解:令 x − 1 = t , x = t 2 + 1 , d x = 2 t d t I = ∫ x − 1 x d x = ∫ t t 2 + 1 2 t d t = 2 t − 2 arctan ⁡ t + C = 2 x − 1 − 2 arctan ⁡ x − 1 + C 解:令\sqrt{x-1}=t,x=t^2+1,dx=2tdt\\ I=\int{\frac{\sqrt{x-1}}{x}dx}=\int{\frac{t}{t^2+1}2tdt}\\ =2t-2\arctan t+C=2\sqrt{x-1}-2\arctan\sqrt{x-1}+C 解:令x1 =t,x=t2+1,dx=2tdtI=xx1 dx=t2+1t2tdt=2t2arctant+C=2x1 2arctanx1 +C
例7 求 ∫ 1 1 + x + 2 3 d x \int{\frac{1}{1+\sqrt[3]{x+2}}dx} 1+3x+2 1dx
解:令 x + 2 3 = t , x = t 3 − 2 , d x = 3 t 2 I = ∫ 1 1 + x + 2 3 d x = ∫ 3 t 2 1 + t d t = 3 2 t 2 − 3 t + 3 ln ⁡ ∣ t + 1 ∣ + C = 3 2 ( x + 2 ) 2 3 − 3 x + 2 3 + 3 ln ⁡ ∣ x + 2 3 ∣ + C 解:令\sqrt[3]{x+2}=t,x=t^3-2,dx=3t^2\\ I=\int{\frac{1}{1+\sqrt[3]{x+2}}dx}=\int{\frac{3t^2}{1+t}dt}\\ =\frac{3}{2}t^2-3t+3\ln|t+1|+C=\frac{3}{2}(x+2)^{\frac{2}{3}}-3\sqrt[3]{x+2}+3\ln|\sqrt[3]{x+2}|+C 解:令3x+2 =t,x=t32,dx=3t2I=1+3x+2 1dx=1+t3t2dt=23t23t+3lnt+1∣+C=23(x+2)3233x+2 +3ln3x+2 +C
例8 求 ∫ d x ( x + 1 ) 2 ( x − 1 ) 4 3 d x \int{\frac{dx}{\sqrt[3]{(x+1)^2(x-1)^4}}dx} 3(x+1)2(x1)4 dxdx
解: I = ∫ d x ( x + 1 ) 2 ( x − 1 ) 4 3 d x = ∫ d x ( x 2 − 1 ) x − 1 x + 1 3 令 x − 1 x + 1 3 = t , x = 1 + t 3 1 − t 3 , d x = 6 t 2 ( t 3 − 1 ) 2 d t I = ∫ 6 t 2 d t ( t 3 − 1 ) 2 ⋅ 1 ( 1 + t 3 1 − t 3 ) 2 − 1 ⋅ 1 t = − 3 2 t + C = − 3 2 x + 1 x − 1 3 + C 解:I =\int{\frac{dx}{\sqrt[3]{(x+1)^2(x-1)^4}}dx}=\int{\frac{dx}{(x^2-1)\sqrt[3]{\frac{x-1}{x+1}}}}\\ 令\sqrt[3]{\frac{x-1}{x+1}}=t,x=\frac{1+t^3}{1-t^3},dx=\frac{6t^2}{(t^3-1)^2}dt\\ I=\int{\frac{6t^2dt}{(t^3-1)^2}\cdot\frac{1}{(\frac{1+t^3}{1-t^3})^2-1}\cdot\frac{1}{t}}\\ =-\frac{3}{2t}+C=-\frac{3}{2}\sqrt[3]{\frac{x+1}{x-1}}+C 解:I=3(x+1)2(x1)4 dxdx=(x21)3x+1x1 dx3x+1x1 =t,x=1t31+t3,dx=(t31)26t2dtI=(t31)26t2dt(1t31+t3)211t1=2t3+C=233x1x+1 +C

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P213~p218.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p30.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值