自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

转载 回归问题的评价测度

https://blog.csdn.net/jasonding1354/article/details/46340729 对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。 下面介绍三种常用的针对回归问题的评价测...

2018-08-30 18:36:32

阅读数 251

评论数 0

转载 箱线图(boxplot)简介与举例

https://blog.csdn.net/raintungl/article/details/78188158 简述:   盒图是在1977年由美国的统计学家约翰·图基(John Tukey)发明的。它由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数...

2018-08-30 13:57:47

阅读数 2790

评论数 0

原创 Pandas Tutorial: Data analysis with Python: Part 1

https://www.dataquest.io/blog/pandas-python-tutorial/

2018-08-29 16:09:45

阅读数 123

评论数 0

原创 pandas基本应用

虽然是英文,但是还是简单的,读起来比较顺畅 https://www.dataquest.io/blog/pandas-tutorial-python-2/  

2018-08-29 15:55:42

阅读数 137

评论数 0

转载 统计分析:偏度和峰度

https://blog.csdn.net/baidu_28858149/article/details/50553414 偏度 偏度(Skewness): 是对Sample构成的分布的对称性状况的描述。 计算时间序列 xx 的偏度,偏度用于衡量 xx 的对称性。若偏度为负,则 xx 均值左...

2018-08-29 14:41:46

阅读数 11687

评论数 0

转载 机器学习特征工程实用技巧大全

https://zhuanlan.zhihu.com/p/26444240 (2018/2/6 更新:修改了部分名词的翻译) 与其说是教程类的科普,不如说是一篇经验向的个人笔记,所以细节上比较懒。其实,我更打算把这篇文章做成一个索引,能够引用原版文档的就引用文档,尽量不重复翻译,毕竟各类文档本...

2018-08-27 23:10:23

阅读数 734

评论数 0

转载 OneHot编码知识点

https://blog.csdn.net/tengyuan93/article/details/78930285 两个多月没有更新博客了,一直忙于天池某个比赛和开题方面的事宜,现在重新抓起,更新博客,希望能整理+思考得出些有营养的东西,也算是自己的笔记方便以后查阅。 如果有错误,请回复指出,...

2018-08-27 22:55:38

阅读数 254

评论数 0

原创 one-hot encoder

在机器学习中,特征经常不是数值型的而是分类型的。举个例子,一个人可能有 ["male", "female"] , ["from Europe", "from US", "from Asia"] ,[...

2018-08-27 22:36:53

阅读数 67

评论数 0

转载 【机器学习】贝叶斯分类(通过通俗的例子轻松理解朴素贝叶斯与半朴素贝叶斯)

https://blog.csdn.net/lyl771857509/article/details/78993493 贝叶斯分类 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可...

2018-08-27 13:48:49

阅读数 1226

评论数 1

原创 缺失值处理

https://www.kaggle.com/wkevin/house-prices    

2018-08-26 16:53:58

阅读数 61

评论数 0

转载 运动物体检测

http://www.cnblogs.com/yingying0907/archive/2012/07/22/2603452.html 混合高斯模型原理     混合高斯模型跟高斯变量之和看起来有一点像, 注意不要把它们弄混淆了. 混合高斯模型给出的概率密度函数实际上是几个高斯概率密度函数的加...

2018-08-24 09:50:51

阅读数 1336

评论数 0

转载 YOLO(You Only Look Once)算法详解

https://blog.csdn.net/u014380165/article/details/72616238   这篇博客主要介绍下YOLO v1算法(CVPR2016的文章)。YOLO是目前比较流行的object detection算法,速度快且结构简单,其他的object detect...

2018-08-22 13:34:20

阅读数 140

评论数 0

转载 Fisher判别分析_用于降维的方法

https://blog.csdn.net/u013943841/article/details/45080889 首先我们得搞清楚什么是Fisher算法?选取任何一本模式识别与智能计算的书都有这方面的讲解。首先得知道Fisher线性判别函数,在处理数据的时候,我们经常遇到高维数据,这个时候往往...

2018-08-20 17:31:10

阅读数 1877

评论数 0

原创 kaggle数字识别之二

步骤4中应该还需要验证错误的图像,大致瞅一下,如果人类也容易出错,那就不管了

2018-08-17 13:39:43

阅读数 105

评论数 0

转载 yolo 目标检测算法个人总结(yolov1)

https://zhuanlan.zhihu.com/p/27515705 yolo 目标检测算法个人总结 目前yolo目标检测有两个版本,分别为v1和v2。因工作需要用yolo算法检测人物,所以这段时间重点看了这两篇论文,并实现了对应的tensorflow代码。这里记录下在论文阅读过程中的一...

2018-08-10 17:49:39

阅读数 2579

评论数 1

转载 目标检测算法之YOLO

https://zhuanlan.zhihu.com/p/38125721 一个小故事 先假设一个场景,幼儿园老师给小朋友们出了一个题目,看谁能最快的找出笑的最美的那张脸?各位SIGAIer也可以试验下,和小朋友们比比测试下自己的辨识能力。 其中有A、B、C三个小朋友很快找出了那张笑的最...

2018-08-10 15:36:16

阅读数 137

评论数 0

转载 t-SNE完整笔记

http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 G...

2018-08-08 18:40:02

阅读数 4746

评论数 2

转载 无监督学习之t-SNE

http://www.datakit.cn/blog/2017/02/05/t_sne_full.html 一、Visualizing Data using t-SNE 论文链接:http://www.jmlr.org/papers/volume9/vandermaaten08a/vander...

2018-08-08 18:38:27

阅读数 552

评论数 0

原创 kaggle——MNIST之一

ml的入门教程,使用svm来做mnist的分类: 细节:直接将image拉成一个向量,然后直接采用svm分类,结果 10%的准确率,和随机猜测ch差不多; 改进版:将grey的image转换为二值化图,即为0或1图,然后相同的的方法训练,准确率飙升至88%; 其他人的版本:将grey归一化到【...

2018-08-06 22:03:12

阅读数 326

评论数 0

转载 windows bat脚本编写

https://www.cnblogs.com/micro-chen/p/5694423.html windows批处理 (cmd/bat) 编程详解     开始之前先简单说明下cmd文件和bat文件的区别:在本质上两者没有区别,都是简单的文本编码方式,都可以用记事本创建、编辑和查看。两者所...

2018-08-03 17:55:31

阅读数 12704

评论数 0

原创 kaggle学习之三——分析属性

1.partial dependence plot这个主要用来分析特征和目标之间的关系 2.pipelines:用这个,可以让你的代码看起来很优雅。 Take your modeling code and convert it to use pipelines. For now, you�...

2018-08-03 14:41:39

阅读数 124

评论数 0

原创 kaggle学习三——强大的算法

说的时XGBoost 对于数值型预测类型。好像很强大。其属于GBRT的优化版,还不是很懂,慢慢补充吧

2018-08-03 14:40:49

阅读数 329

评论数 0

原创 kaggle学习二——丢失数据的处理

1.直接丢弃 当然一般效果不好 2.采用插值的方式处理 均值,中值等 sklearn.impute 3.插值的加强版 (说实话,没有太看懂) Imputation is the standard approach, and it usually works well. Howeve...

2018-08-02 11:38:24

阅读数 287

评论数 0

原创 项目一总结

1.熟悉数据 这儿尝试用pandas 2.理解数据 此处主要列举数据的一些信息,有效数据、均值、最大值、最小值等 注意:有些数据有时效性,数据收集的是2010年的房子价格,如果你预测2011,一切没有问题,但是今年是2018年,有点太旧了,你需要增加新的数据了。 3.挑选特征 针对大量...

2018-08-01 22:41:35

阅读数 80

评论数 0

提示
确定要删除当前文章?
取消 删除