【视觉分割新SOTA】一种最先进的图像分割模型!Meta 的 FAIR 实验室发布的Segment Anything Model (SAM)

【视觉分割新SOTA】一种最先进的图像分割模型!Meta 的 FAIR 实验室发布的Segment Anything Model (SAM)

【视觉分割新SOTA】一种最先进的图像分割模型!Meta 的 FAIR 实验室发布的Segment Anything Model (SAM)



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览2024年即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

参考链接:https://ai.meta.com/research/publications/segment-anything/

1. SAM 的起源与提出

Segment Anything Model (SAM) 是由 Meta 的 FAIR 实验室推出的图像分割基础模型。基础模型(Foundation Model)的概念源于自然语言处理(NLP),其中 BERT 和 GPT 等模型通过训练大规模通用数据,成为可适应多种下游任务的通用模型。FAIR 将这种思路应用于计算机视觉,特别是图像分割任务。

SAM 旨在通过“提示分割”(promptable segmentation)来应对各类图像分割问题,用户只需提供少量提示(如框、点、文本等),模型便能准确分割出相应对象。

SAM 的提出是为了解决传统图像分割模型依赖于特定领域数据的局限性,设计出一种可以广泛应用于不同场景和数据集的通用分割模型。它不仅简化了模型在不同任务中的迁移,还显著提升了分割效率和准确性。

2. SAM 的原理与创新点

SAM 是一种“提示分割”(promptable segmentation)模型,其核心思想是通过不同形式的提示(例如框、点、文本提示等)来指导模型完成各种分割任务。这使得 SAM 能够处理不同复杂度的分割任务,从精细分割到粗略目标分割

SAM 的创新点包括:

  • Promptable Segmentation: SAM 通过提示工程完成分割任务,不再依赖于单一类型的输入(如全局图片),而是允许用户灵活选择提示类型,使其适应不同场景。

  • 通用性和可扩展性: 传统图像分割模型通常针对特定任务进行训练,而 SAM 经过大规模训练,具备处理广泛数据和任务的能力,无需重新训练即可应用于各种分割任务。

  • 多模态交互: SAM 允许通过多种交互方式(如点击、框选或文本)指导分割,不仅提升了分割的灵活性,还大大减少了人工干预。

  • 强大的泛化能力: SAM 在多个下游任务中的表现优于以往的专用模型,能够处理不同场景中的未标注或部分标注数据。

3. SAM 与以前模型的区别和联系

SAM 相较于传统的图像分割模型有明显的创新之处,同时继承了深度学习和计算机视觉领域的许多技术

  • 与传统分割模型的联系: 传统的图像分割模型(如 U-Net、Mask R-CNN)主要依赖于针对特定任务的数据进行监督训练,它们在特定领域内表现优异,但往往需要为每个任务重新训练。而 SAM 延续了这些模型的基础卷积网络、全连接层、跨网络结构的设计思路

  • 与传统模型的区别: SAM 的关键区别在于其提示式分割架构。这意味着它不仅能够处理单一任务,还能通过用户提供的提示来完成不同的分割任务,大大提高了灵活性和适应性。SAM 不需要每次为不同任务重新训练,而是可以通过少量提示高效地适应新的分割问题

4. SAM 的网络架构、设计和实现

SAM 的网络架构设计围绕提示分割任务展开,主要包括以下几个模块:

  • 特征提取器(Feature Extractor): SAM 使用一种类似 Transformer 的模型来提取输入图像的特征。由于 Transformer 具有很强的全局上下文建模能力,SAM 在理解图片的全局语义信息方面表现优异。

  • Prompt Encoder(提示编码器): SAM 支持多种提示输入,如点、框、文本等。该模块的作用是将这些提示信息转换为能够与图像特征进行融合的提示向量,从而指导分割任务。

  • Mask Decoder(掩码解码器): 掩码解码器负责根据特征提取器输出的图像特征以及提示编码器提供的提示信息,生成最终的分割掩码。SAM 通过注意力机制有效结合图像特征和提示信息,使得分割结果具有很高的精确性和可控性。

5. SAM 的发展和应用

SAM 的发布开启了图像分割领域的新时代,具有广泛的应用场景:

  • AI 辅助打标: SAM 可以用于标注大型图像数据集,尤其是当图像中的对象较多且边界模糊时,手动标注的工作量非常大。通过 SAM 的提示分割功能,用户只需提供简单的提示,模型便能自动完成精确的分割,极大地减少了人工标注时间,提升了标注效率。

  • 医疗图像分割: 医疗领域中的图像分割任务(如肿瘤检测)需要高精度和高效率,SAM 能够根据医生提供的提示快速识别出病变区域,为医疗图像分析提供了新的工具。

  • 自动驾驶: 在自动驾驶场景中,车辆需要对道路上的物体进行精确的实时分割。SAM 的提示分割能力可以帮助车辆在复杂的道路环境中快速识别不同的对象,如行人、车辆、障碍物等。

  • 卫星遥感: 在遥感领域,SAM 可以通过简单的提示完成大规模的地表对象分割任务,如建筑物、河流、农田等的自动识别,为地理信息系统(GIS)等应用提供更高效的支持。

6. SAM 改变游戏规则的原因

SAM 之所以能够被认为是改变游戏规则的模型,主要在于以下几点:

  • 广泛的适应性: 以往的分割模型针对特定任务进行设计和训练,SAM 打破了这一限制,可以通过少量提示实现不同场景的分割任务,具备极强的泛化能力。

  • 效率提升: SAM 能够通过简单的提示完成复杂的分割任务,极大减少了模型训练和推理时间,适用于需要快速响应的应用场景。

  • 人机交互提升: SAM 的提示分割使得人机交互更加直观和灵活,用户可以通过交互式提示精确控制分割过程,这种灵活性和控制感是以往模型无法比拟的。

7. 总结

SAM 代表了图像分割领域的重大创新。通过将基础模型的思想引入计算机视觉,SAM 实现了从单一任务模型到通用分割模型的跨越,支持多模态提示输入,使得分割任务更加灵活和高效。SAM 的广泛应用前景不仅仅局限于计算机视觉的传统领域,还扩展到了数据标注、医疗、自动驾驶、遥感等众多领域,极大改变了图像分割的游戏规则

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览2024年即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值