特征工程初步学习
基本数据处理
1.缺失值的填充
df_train['Age'].fillna(value = df_train['Age'].mean()) #df_train数据包含关键字age的column,中间的缺失值用该列平均值填充。
用sklearn的包
from sklearn.preprocessing import Imputer help(Imputer)
Imputation transformer for completing missing values.
基本数据处理
1.缺失值的填充
df_train['Age'].fillna(value = df_train['Age'].mean()) #df_train数据包含关键字age的column,中间的缺失值用该列平均值填充。
用sklearn的包
from sklearn.preprocessing import Imputer help(Imputer)
Imputation transformer for completing missing values.