将model转化为字典

这篇博客介绍了如何利用Objective-C的Runtime机制将Model转换为字典。首先,通过Runtime遍历Model的所有属性值,然后对不同类型的值进行处理。作者发现简单的递归方法无法应对所有情况,如数组、字典等复杂结构。通过改进代码,实现了能够处理任意嵌套情况的转换功能,并给出了测试用例的示例。
摘要由CSDN通过智能技术生成

将model转化为字典

刚入行时就见过项目里有mode转化为字典的代码,后来用过MJExtension的第三方库,非常好用,其实原理就是利用runtime遍历所有属性值,然后进行转化。但是自己从来没有动手写过~~~今天亲自写一写

1.先用runtime遍历所有属性值

代码如下:

- (NSDictionary *)dicFromObject:(NSObject *)object {
    NSMutableDictionary *dic = [NSMutableDictionary dictionary];
    unsigned int count;
    objc_property_t *propertyList = class_copyPropertyList([object class], &count);

    for (int i = 0; i < count; i++) {
        objc_property_t property = propertyList[i];
        const char *cName = property_getName(property);
        NSString *name = [NSString stringWithUTF8String:cName];
        NSObject *value = [object valueForKey:name];//valueForKey返回的数字和字符串都是对象

        if (value == nil) {
            //null
            //[dic setObject:[NSNull null] forKey:name];//这行可以注释掉?????

        } else {
            //model
            [dic setObject:[self dicFromObject:value] forKey:name];
        }
    }

    return [dic copy];
}

这时我发现上面的代码只能转化简单的model, 而value的可能情况很多,可能是数组,可能是字典,一会又发现数组或字典里可能嵌套数组或字典或model,我的妈妈,单纯一个递归方法根本无法实现所有的情况,还需要再添加方法。这么太复杂吗?我记得别人写时很简单呀。于是我百度了一下,几乎所有代码都是上述类似代码,我也是醉了。。这根本无法适用在实际的项目里。

2.代码改进如下:
//model转化为字典
- (NSDictionary *)dicFromObject:(NSObject *)object {
    NSMutableDictionary *dic = [NSMutableDictionary dictionary];
    unsigned int count;
    objc_property_t *propertyList = class_copyPropertyList([object class], &count);

    for (int i = 0; i < count; i++) {
        objc_property_t property = propertyList[i];
        const char *cName = property_getName(property);
        NSString *name = [NSString stringWithUTF8String:cName];
        NSObject *value = [object valueForKey:name];
将TensorFlow模型转换为PyTorch模型通常涉及两个主要步骤:模型结构的转化和权重数据的迁移。由于这两个库底层实现和数据结构不同,直接转换可能会比较复杂。以下是大致流程: 1. **模型结构转换**: - 首先,你需要获取TensorFlow模型的结构(如层、节点等),这可以使用`tf.keras.models.model_to_dot()`函数生成图形表示。 - 然后,利用像`onnx`这样的中间格式工具将TensorFlow模型导出为ONNX(Open Neural Network Exchange)格式,因为ONNX是一个通用的神经网络架构描述语言,对PyTorch支持良好。 - 使用ONNX将模型转换为PyTorch,例如通过`torch.onnx.load`加载ONNX文件。 2. **权重数据迁移**: - 导出TensorFlow模型的权值:在TensorFlow中,你可以使用`model.get_weights()`获取所有层的权重。 - 将这些权重加载到PyTorch模型中:PyTorch模型的权重通常存储在`.pt`文件中,也可以手动创建张量并设置给模型的相应层。 ```python # 示例代码 import torch import onnx # 假设我们已经有一个ONNX模型 onnx_model = onnx.load("my_model.onnx") # 获取TensorFlow权重 tf_weights = model_in_tensorflow.get_weights() # 创建一个空的PyTorch模型 pytorch_model = SomePyTorchModel() # 根据具体模型构造 # 逐层映射权重 for tf_weight, pt_weight in zip(tf_weights, pytorch_model.parameters()): pt_weight.data = torch.from_numpy(tf_weight) # 可能还需要调整其他细节,比如激活函数的参数等 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值