凸函数和凹函数在国内和国外的一些定义是相反的 Convex function和Concave Function

Convex Function

DOWNLOAD Mathematica NotebookConvexFunction

A convex function is a continuous function whose value at the midpoint of every interval in its domain does not exceed the arithmetic mean of its values at the ends of the interval.

More generally, a function f(x) is convex on an interval [a,b] if for any two points x_1 and x_2 in [a,b] and any lambda where 0<lambda<1,

f[lambdax_1+(1-lambda)x_2]<=lambdaf(x_1)+(1-lambda)f(x_2)

(Rudin 1976, p. 101; cf. Gradshteyn and Ryzhik 2000, p. 1132).

If f(x) has a second derivative in [a,b], then a necessary and sufficient condition for it to be convex on that interval is that the second derivative f^('')(x)>=0 for all x in [a,b].

If the inequality above is strict for all x_1 and x_2, then f(x) is called strictly convex.

Examples of convex functions include x^p for p=1 or even p>=2xlnx for x>0, and |x| for all x. If the sign of the inequality is reversed, the function is called concave.

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页