GarfieldEr007的专栏

勤奋治学 深度思考 静心钻研 先苦后甜

多元分布和狄利克雷分布

Multinomial distribution 将二元分布的二元情况扩展到多元,即可得到对应的多元分布。 首先先将伯努利分布扩展到多元假设对于离散变量xx,可能有KK个取值,那么xx一次的观测值被表示为一个向量,且满足∑Kk=1xk=1∑k=1Kxk=1,仅有一个维的值为11,其它都...

2016-02-29 20:47:14

阅读数 1987

评论数 0

Fishe向量Fisher Vecotr(二)

在Fisher Vector(1)中介绍了线性核,为了满足不同的需求,实际应用中会使用多种多样的核函数,Fisher Kernel就是其中的一种。 Fisher Kernel 此时仍旧对于一个(1,−1)(1,−1)的二分类问题,我们要学习 P(x,y)=P(x|y)P(y)...

2016-02-29 20:46:07

阅读数 812

评论数 0

Fishe向量Fisher Vecotr(一)

在高斯混合模型中,我提到了特征处理的一般流程: 事实上高斯混合模型完成的是k-means的任务,那么通过高斯混合模型聚类后,也用一般的基于距离的方法进行feature encoding么?不是的,高斯混合模型通常和Fisher Vector一起使用。现在就来对Fisher Vecto...

2016-02-29 20:44:30

阅读数 1174

评论数 0

最小二乘法least square

上研究生的时候接触的第一个Loss function就是least square。最近又研究了一下,做个总结吧。 定义看wiki就够了。公式如下 E(w)=12∑n=1N{y−xWT}2E(w)=12∑n=1N{y−xWT}2 其中yy代表类标列向量,xx代表特征行向量,WW...

2016-02-29 20:35:15

阅读数 3123

评论数 0

GMM高斯混合模型

在一般的分类问题中,通常的套路都是提取特征,将特征输入分类器训练,得到最终的模型。但是在具体操作时,一开始提出的特征和输入分类器训练的特征是不一样的。比如假设有N张100×100100×100的图像,分别提取它们的HoG特征x∈Rp×qx∈Rp×q,pp为特征的维数,qq为这幅图像中HoG特征的个...

2016-02-29 20:31:25

阅读数 1755

评论数 0

用CAMSHIFT优化霍夫变换Refining the Hough Transform with CAMSHIFT

Refining the Hough Transform with CAMSHIFT The Circular Hough Transform result is often not very accurate due to noise\details\occlusions. ...

2016-02-29 19:56:43

阅读数 1300

评论数 0

使用Mumford Shah 函数平滑图像Smoothing images with the Mumford Shah functional

Try out my python implementation for minimizing the Mumford Shah functional. import cv2 from AmbrosioTortorelliMinimizer import * img = cv2.imread(...

2016-02-29 19:54:40

阅读数 885

评论数 0

从直方图反向映射进行简单的图像显著性检测Simple Image saliency detection from histogram backprojection

Simple Image saliency detection from histogram backprojection Image saliency detection is about identifying the interesting parts of an imag...

2016-02-29 19:52:11

阅读数 2174

评论数 0

基于BOW模型的图像分类Bag Of Visual Words model for image classification

Bag Of Visual Words model for image classification I wanted to play around with Bag Of Words for visual classification, so I coded a Mat...

2016-02-29 19:49:41

阅读数 2658

评论数 0

用Python实现Fisher向量Image Fisher Vector In Python

Image Fisher Vector In Python Although the state of the art in image classification is deep learning, Bag of words approaches still perfo...

2016-02-29 19:44:02

阅读数 2759

评论数 1

Fisher Vector(FV)向量

在图像分类或者检索领域,相对于BOV模型来说,Fisher Vector可以包含更深层次的图像信息,从而达到更好的效果。在实际的图像分类或检索的操作中,会事先对提取出来的图像特征使用GMM来聚类得到一个概率字典(关于GMM的描述请参见另一篇文章)。在后面的计算中主要会使用通过GMM求解得到的先验的...

2016-02-29 19:42:06

阅读数 5169

评论数 1

SIFT(Scale-invariant feature transform, 尺度不变特征转换)特征

SIFT算法的全称是Scale-invariant feature transform,尺度不变特征转换,是一种不随图像尺度旋转变化而变化的特征,因此SIFT特征不会随着图像的放大缩小,或者旋转而改变,同时由于在提取特征时做的一些特殊处理,使得SIFT特征对于光照变化也有比较强的适应性。以下是算法...

2016-02-29 19:39:59

阅读数 4557

评论数 0

GMM(Gaussian mixture model, 高斯混合模型)

GMM全称是Gaussian mixture model (高斯混合模型)。与k-means算法类似,GMM也是一种常见的聚类算法,它与k-means区别主要在于,GMM是一种“软聚类”算法,通过它我们可以得到每个样本属于每个中心点的概率。正是因为它的这种性质,GMM在图像分割和语音处理中都有着广...

2016-02-29 19:38:26

阅读数 3033

评论数 0

PASCAL VOC数据集The PASCAL Object Recognition Database Collection

The PASCAL Object Recognition Database Collection News 04-Apr-07: The VOC2007 challenge development kit is now available. Objectives To c...

2016-02-29 19:35:42

阅读数 2578

评论数 0

Vision Lab Features Library (VLFeat)库C语言API接口

Vision Lab Features Library (VLFeat) Version0.9.20 AuthorThe VLFeat Team Copyright © 2012-14 The VLFeat Authors Copyright © 2007-...

2016-02-28 19:42:29

阅读数 1370

评论数 0

VLFeat库matlab API接口

vl_compile Compile VLFeat MEX filesvl_demo Run VLFeat demosvl_harris Harris corner strengthvl_help VLFeat toolbox builtin helpvl_noprefix Create a pr...

2016-02-28 19:39:35

阅读数 2052

评论数 0

高数试题与答案

往年试题 高等数学(A) 高等数学(B) 高等数学(C) 2008春季试题   2008春季试题答案 2008春季试题    2008春季试题答案 2006秋季试题   2006秋季试题答案 2008秋季试题   2...

2016-02-28 19:34:54

阅读数 1072

评论数 0

部分数学课件

多媒体课件 1.1  函数 3.1   定积分的概念和性质 1.2  数列的极限 3.2   不定积分的概念与计算 1.3  函数的极限 3.3   定积分的计算 1.4  连续函数 3.4   定积分的应用 2.1  导数的概念 3...

2016-02-28 19:33:18

阅读数 719

评论数 0

《玩不够的数学:算术与几何的妙趣》:第一章 平面上的几何艺术

第一章 平面上的几何艺术 人们往往从悖论中获得思维的乐趣,而几何学的悖论就是不可能图形。如今我们已创造出数千种这样的二维图像,不断挑战我们的眼睛和思维。三角形、披萨饼、七巧板也蕴藏着无穷的变化和巧妙的发现。 不可能!你确信吗? 人们从透视错觉得来灵感,创造了神秘的“不可能图形”。...

2016-02-28 16:19:02

阅读数 9488

评论数 0

《Docker——容器与容器云》:第五章 构建自己的容器云

我们在第1章介绍了一个云计算平台应有的层次结构,其中平台即服务层(PaaS)是本书重点着墨描述的。尽管在一些经典PaaS平台中,容器技术已经扮演了一个至关重要的角色,但很遗憾,大部分经典PaaS平台中容器功能被局限在了“资源隔离”这狭小的技术范围当中了。当拥有了像Docker这样的容器技术后,是时...

2016-02-28 16:17:12

阅读数 4477

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭