数学
万蕊清
这个作者很懒,什么都没留下…
展开
-
LDA及其在人脸识别上的应用
基本思想:将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。 LDA:线性判别分析,也称为Fisher线性判别,是常用的降维技术。 LDA降维后的维度是直接和类别的个数相关的,与数据本身的维度没关系,比如原始数据是n维的,一共有C个类别,那么LDA降维之后,一般就原创 2014-04-07 17:22:15 · 3473 阅读 · 0 评论 -
向量的范数
假设: 是一个n维的列向量,那么,x对应的p范数定义为: 令p=1,可知x的1范数为: 令p=2,可知x的2范数为:原创 2014-04-07 10:30:56 · 2412 阅读 · 0 评论 -
PCA算法及其在人脸识别上的应用
PCA,也就是PrincipalComponents Analysis,主成份分析,是个很优秀的算法,按照书上的说法: 寻找最小均方意义下,最能代表原始数据的投影方法 然后自己的说法就是:主要用于特征的降维 另外,这个算法也有一个经典的应用:人脸识别。这里稍微扯一下,无非是把处理好的人脸图片的每一行凑一起作为特征向量,然后用PAC算法降维搞定之。原创 2014-04-08 18:10:38 · 2245 阅读 · 0 评论 -
如何在CSDN博客中编辑公式?
CSDN博客编辑框中没有自带的公式编辑器,原创 2014-04-07 22:34:38 · 2271 阅读 · 1 评论