复现Deeply Supervised Salient Object Detection with Short Connections过程(附tensorflow+python代码)

趁着周末,把自己上周复现的paper CVPR 2017 “Deeply Supervised Salient Object Detection with Short Connections”写下来,以便以后加深影像。数据部分来自于项目的数据,所以并没有用论文中的原始数据测试和论文中的结果的差别。...

2018-03-02 23:20:36

阅读数 4301

评论数 30

CornerNet详解

一、网络结构 先放一个网络的结构图以便理解: 首先1个7×7的卷积层将输入图像尺寸缩小为原来的1/4(论文中输入图像大小是511×511,缩小后得到128×128大小的输出)。 然后经过特征提取网络(backbone network)提取特征,该网络采用hourglass network,该网络...

2019-05-06 11:15:36

阅读数 69

评论数 0

CenterNet :Objects as Points阅读笔记(未完待续)

这个文章作者在构建模型时将目标作为一个点——即目标BBox的中心点。我们的检测器采用关键点估计来找到中心点,并回归到其他目标属性,例如尺寸,3D位置,方向,甚至姿态 ...

2019-05-02 18:40:59

阅读数 77

评论数 0

tensorflow一行一行实现SSD目标检测算法及全网做详细解读

参考了一些网上的SSD的实现,现在对其进行tensorflow的实现讲解,我将一行一行的讲解实现过程。附一个我写的SSD算法的详解链接。 一、Backbone函数(基于VGG16) # 基于vgg16函数的backbone #b1 ...

2019-04-01 15:24:11

阅读数 101

评论数 0

YOLO V1全网最详细的解读

看了很多网上的关于YOLO的教程,发现大家都是相互抄袭,并没有很详细的讲解其中的算法,所以我结合网上的和自己的理解对其进行全网最详细讲解。 一、YOLO:YOLO: Unified, Real-Time Object Detection概述 YOLO作者将物体检测作为回归问题求解,基于一个简单的e...

2019-03-28 15:15:40

阅读数 210

评论数 6

AlignedReID: Surpassing Human-Level Performance in Person Re-Identification 详解

一、概述 现有的方案大多数侧重于全局特征,无视行人的空间结构,会带来一些弊端和问题如下:

2018-11-19 14:08:24

阅读数 105

评论数 0

Mask-guided Contrastive Attention Model for Person Re-Identification 详解

最近在看Re-ID相关的东西,现在把这篇paper记录一下。代码地址 一、概述 首先二元体掩码可以在两个方面为Re-ID做出贡献。1、掩模可以帮助消除像素级的背景杂波,这可以极大地提高ReID模型在各种背景条件下的鲁棒性。2、面具包含可被视为重要步态特征的体形信息。 如果直接掩盖掉图像中的背景,会...

2018-11-17 11:49:26

阅读数 232

评论数 0

Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd 详解(遮挡下的行人检测)

文章地址:https://arxiv.org/pdf/1807.08407.pdf 暂时没有放出源代码,如果有小伙伴找到代码的话欢迎留言给我。 一、概述 依然是解决在遮挡的情况下对人的检测的文章,作者分别从loss和two stage detector中核心的ROI Pooling操作这两个角度出...

2018-11-12 09:33:46

阅读数 859

评论数 2

Repulsion Loss: Detecting Pedestrians in a Crowd 详解(遮挡下的行人检测)

最近做新人检测Re-ID的工作,刚好记录一下对论文的阅读和个人理解。文章中部分内容为引用别人的,我在文章最后也给出了引用的文章链接。如有侵权,请联系我删除。 一、综述 行人检测中遮挡分为两种类型,一种是由于非目标造成的遮挡,文中作者称为Reasonable-occlusion,另外一种是由于也是需...

2018-11-11 11:11:31

阅读数 868

评论数 0

Learning without Forgetting 详解(LwF)

一、概述 这篇文章仍然从最简单的分类任务入手,巧妙运用了Knowledge Distill技术来缓解这样的问题。具体地,使用旧模型作为teacher model,对于新任务中的每一个样本。和传统的Finetune比起来,LwF使用了teacher model输出的soften softmax对新任...

2018-11-04 18:49:39

阅读数 818

评论数 0

语义分割总结(未完待续)

语义分割总结一、综述二、 网络结构1)FCN2)SegNet3)U-Net如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富...

2018-11-01 11:01:10

阅读数 1028

评论数 0

Incremental Learning of Object Detectors without Catastrophic Forgetting详解

Incremental Learning of Object Detectors without Catastrophic Forgetting详解 最近由于项目的需要在研究incremental learning在目标检测方面的应用,刚好读到了INRIA在2007年的一篇paper,采用蒸馏lo...

2018-11-01 10:57:51

阅读数 368

评论数 0

MobileNet v1 和 v2 记录

最近在搞检测的cpu部署,对inference阶段的响应时间有较高的要求,所以就对mobilenet的学习记录一下。 一、MobileNet v1: 先上一个结构: 图a就是我们知道的标准意义的卷积,这个卷积可以等价于Depthwise和1x1的卷积的结合。那么为什么可以这样呢?我们先给...

2018-09-16 09:26:03

阅读数 1249

评论数 0

反卷积(conv_transpose) vs 卷积(convolution)详解

一直对反卷机这个操作比较迷茫,在面试的过程中也经常被面试官问到反卷机的问题,所以就写这个博客简单的介绍一下反卷机的计算,并也卷积进行对比。 ...

2018-08-12 21:29:11

阅读数 621

评论数 1

ResNet V1 vs V2详解

最近看李沐的gluon课程提到了conv、bn、relu等的顺序问题,现将resnet v1和v2总结如下。 首先给出resnet v2的paper里面kaiming大神给出的不同的结构对比: 图a为resnet v1的结构,图e为resnet v2的结构。(weight为conv层),左...

2018-08-08 11:45:41

阅读数 3969

评论数 0

感受野的计算方式

RF(当前层) = RF(前一层) + (kernel_size(当前层) - 1) x feature_stride(之前所有层的的stride相乘的加和,不包括当前层) 如果有dilated conv的话,计算公式为: RF(当前层) = RF(前一层) + (kernel_size(当前...

2018-07-31 11:48:54

阅读数 280

评论数 0

SSD详解 + default box生成过程

在mxnet上面看李沐大神的视频,自己看了SSD的paper里面还是有些一知半解的东西,于是就用篇博客记录下来。文章中的图和部分见解都来自于网络有些错误的图已经修正,如有侵权,联系我删除。 先放一张SSD算法的模型图。SSD采用不用卷积层的feature map进行综合,将VGG16的最后两...

2018-07-27 14:53:42

阅读数 2404

评论数 0

FPN的理解

本文记录一下我在看FPN这篇paper的时候已经自己用的时候的一些问题。本文中有些摘抄自别人的博客,如有侵权,望联系我删除。 FPN的一个github:https://github.com/unsky/FPN 一、介绍 老样子先上图,图d即为FPN的核心。 二、具体实现方法 将图片送...

2018-07-24 17:22:23

阅读数 1001

评论数 0

Senet学习记录

Senet是2017年Image Classification的冠军,本文主要是为了记录一下senet的block的结构。Senet主要做的是从空间维度上来提升网络的性能,于是就有了两个比较重要的操作,即:Squeeze和Excitation。其中Squeeze主要是顺着空间维度方向来进行压缩,将...

2018-07-13 17:40:30

阅读数 714

评论数 0

tensorflow冻结层的方法

最近在搞faster-rcnn的改动,网上看到很多人在做的一些改进,其中就包括冻结Bn等等方式,于是自己也就查了一下tensorflow里面冻结层的方法,现在总结如下:1、比如使用一个VGG的前面提取特征的部分,而微调其全连层,或者将其全连层更换为使用convolution来完成,可以使用Tens...

2018-07-09 15:19:16

阅读数 2566

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭