英特尔“芯”AI,赋能云边端|第一期:开启 AI 新时代的云边端闭环

原文链接

2025 年,人工智能(AI)正迈入新的时代。全球范围内,边缘计算的增长显著,预计 50% 以上的企业数据将在边缘设备上处理。与此同时,大型语言模型(LLM)的热潮席卷各行各业,从智能客服到数据分析,AI 的应用场景日益多元化。然而,企业和组织在拥抱 AI 转型时面临诸多挑战:高昂的硬件成本(传统 GPU 解决方案动辄 5000 美元/节点)、数据隐私风险,以及云端计算带来的延迟问题。

为了应对这些挑战,上海亿琪软件有限公司推出 YiCoreAI 平台,依托英特尔强大的产品栈,打造了一个通用的 云边端 AI 闭环解决方案。YiCoreAI 整合了英特尔 Xeon CPU、Arc A770 GPU、Core Ultra NPU,以及 OpenVINO、IPEX(Intel® Extension for PyTorch) 和 EdgeX Foundry 等技术,通过 训练(YiAISTUDIO)、管理/下发(YiCONNECT)、推理/优化(YiEDGE) 的闭环流程,为各种行业和领域提供灵活、高效的 AI 赋能。

目录

  • 演示视频

  • 背景与趋势

  • 面临的挑战

  • YiCoreAI 的通用解决方案

  • 技术优势

  • 亿琪软件与英特尔生态的协同

  • 未来展望

演示视频

英特尔“芯”AI,赋能云边端 第一期

背景与趋势

近年来,AI 的计算需求激增。据预测,到 2025 年,全球 AI 市场规模将超过 1 万亿美元,其中边缘 AI 的增长尤为迅猛。边缘计算的优势在于减少数据传输延迟、增强隐私保护,但也对计算能力和成本提出更高要求。与此同时,LLM 模型(如 Qwen-7B)的普及推动了智能问答、文本生成等应用的爆发,传统云端解决方案已难以满足多场景需求。

面临的挑战

  • 成本问题:高性能 GPU(如 Nvidia H100)的采购和维护成本让许多中小企业望而却步。

  • 隐私与延迟:云端集中式计算可能导致数据泄露风险,且远程传输延迟影响实时性。

  • 行业适配性:单一解决方案难以满足零售、安防、物流、教育等多样化需求。

那么,我们势必需要一款 通用解决方案,既能满足不同行业的 AI 需求,又能降低成本,同时确保数据安全和实时响应。

YiCoreAI 的通用解决方案

YiCoreAI 平台通过 云边端协同,解决上述难题。其核心架构包括:

  • YiAISTUDIO(训练):利用英特尔 Xeon CPU 和 Arc 系列 GPU(如:A770/B580),提供高效的模型训练支持,适配各种 AI 模型(如 YOLOv8/v11 对象检测、Qwen-7B 智能问答)。

  • YiCONNECT(管理/下发):基于 Kubernetes 和 Kubeflow 生态,实现模型管理和设备分发,确保跨设备无缝协作。

  • YiEDGE(推理/优化):依托英特尔 AIPC(Core Ultra NPU) 和 OpenVINO(OVMS: OpenVINO Model Server),优化边缘推理,支持多种数据类型(图像、文本、传感器数据)。

技术优势

  • 成本优化:YiCoreAI 每节点成本仅 2000 美元,相比传统方案节省 20-60%。英特尔 Arc A770 GPU(300 美元)提供接近 RTX 3060 的性能(250 images/sec),性价比突出。

  • 性能提升:Core Ultra NPU 推理延迟低至 30-50ms,OpenVINO 的 INT8 量化技术进一步提升效率,且功耗大幅降低,对于成千上万台设备,可节省数万美元/年。

  • 通用性:支持多种模型和数据类型,适配零售(库存管理)、安防(视频分析)、物流(路径优化)、教育(智能问答)等行业,满足多样化需求。

在这样的技术优势下,我们相信 YiCoreAI 将成为 AI 新时代的云边端闭环解决方案,助力企业和组织实现数字化和 AI 转型。

亿琪软件与英特尔生态的协同

作为 EdgeX TSC 成员,亿琪软件深耕边缘计算领域,结合 YiLABEL(数据标注)和 YiEDGE(边缘计算),为 YiCoreAI 提供强大的技术基础。英特尔生态的支持进一步增强了平台的兼容性和扩展性。

未来展望

YiCoreAI 计划开源代码,吸引全球开发者社区,并积极参与社区活动,如 2025 英特尔人工智能创新应用大赛。我们期待与更多企业和开发者合作,共同推动 AI 技术的创新与应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值