(翻译)隔离效应(Isolation Effect)

问题概述

  与众不同才能令人难以忘怀。

示例

在这里插入图片描述

用途
  • 用于想将用户注意力放在众多事物中的一个上。
解决方案

  让重要信息或关键操作的外观与众不同。
  隔离效应,也称雷斯托夫效应,是指众多相似对象中,与众不同的那个更容易被记住。对象出现的越少,越不容易被人记住。
  据此推断,人们评价事物的依据是事物是否单独放置或者是否放在替代物旁边。单独放置的事物更具吸引力,如果是放在替代物旁,也能显的它高出一筹。[1]

说明

  与众不同才能让人记忆深刻,记忆深刻才能脱颖而出。创造有意义、有益的产品对比,使用颜色、形状、位置和纹理来强调对比,如果能理解对比的意义,用户的印象会更加深刻。
  人们会记住与众不同的东西,因此行为召唤按钮(CTA)引人注目,在同页面的按钮之中特别显眼。

讨论

  1933年,冯·雷斯托夫发现了雷斯托夫效应。她围绕孤立和独特的项目进行了一组记忆实验,并得出结论,一组相似事物中的孤立对象更容易被记住,如果在相同位置放一个普通事物,则难以给人留下印象。[2]
  Taylor和Fiske进一步指出[3],通常显著的、新奇的、意外的、独特的因素可以吸引注意力,这些可以用于增强雷斯托夫效应。

原文地址:https://ui-patterns.com/patterns/isolation-effect

[1]原文:Inferred, people value a thing differently depending on whether it is placed in isolation and whether it is placed next to an alternative. One choice can be made to look more attractive, when placed next to an alternative, to which it distinctively outranks in some respect.
[2]原文:The Von Restorff effect was recognised by Hedwig von Restorff in 19331. She conducted a set of memory experiments around isolated and distinctive items, concluding that an isolated item, in a list of otherwise similar items, would be better remembered than an item in the same relative position in a list where all items were similar.
[3]文章出处:Salience, attention and attribution: Top of the head phenomena (1978), In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 11. pp. 249-288). New York: Academic Press

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值