二进制系统不能精确表示 0.9

我的主力博客:半亩方塘

首先来看看下面的一个例子:

public class Test
{
    public static void main(String[] args)
    {
        System.out.println( 2.0-1.1 );
    }
}

将上述代码保存到名为 Test.java 的文件中,执行后得到的结果为 0.8999999999999999,而不是得到想象中的 0.9,这是为什么呢?

这是因为,浮点数值在 Java 中是采用二进制系统表示的,二进制系统无法精确表示 0.9,我们知道,十进制小数向二进制小数转换的时候分别对 整数部分 和 小数部分 进行转换,第一步,将 整数部分除 2 取余 ,直到商为 0 为止,然后依次 将所得余数逆向排列 ,得到整数部分的二进制结果,第二步,将 小数部分乘 2 取整,直到小数部分为 0 为止,然后依次 将所得整数顺向排列 ,得到小数部分的二进制结果,例如我们要将 12.75 转换成二进制结果,步骤如下:






所以最后十进制的 12.75 转换成了二进制的 1100.11,我们来验算一下结果,将每一位数字乘以对应的位权得到:

1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 + 1 * 2^-1 + 1 * 2^-2 = 12.75

由此可见完全正确,清楚了十进制小数到二进制小数的转换后,下面我们来谈谈为什么二进制不能精确表示 0.9,我们将 0.9 转换成对应的二进制数如下:



由上图可知,绕回去了,照此进行下去的话会不断重复这种绕回的过程,无休无止,因此,二进制系统不能精确地表示 0.9,同理,基于同样的理由,二进制系统也并不能精确地表示 0.1,这就像十进制系统不能精确地表示 1/3 (无限循环小数)一样。

最后需要注意的一点是,在 Java 中是这样的,但是在 C/C++ 中并不是这样,C/C++ 中能精确表示 Java 中不能精确表示的浮点数。


  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值