java 图像识别技术实例

用java语言实现。首先用matlab实现了识别算法的仿真,因为只是对特定的数字组合的识别,所以非常的简单,放弃采用比较复杂的识别算法,采用最普通的像素比较的识别算法。(如果背景噪声比较复杂,可以考虑先滤波后识别)在写 java程序的时候发现一些问题,网上关于图片像素级操作的资料不是太多,有的还不是太正确,特此写出自己的成果与大家分享。

核心类:BufferedImage,ImageIO
ImageIO类提供图象读写接口,可以对URL,InputStream等操作,得到图像信息十分的方便。
ImageIO在javax.imageio.*的包中,属于jdk中的标准类。提供的方法有:
read()  例:BufferedImage imd=ImageIO.read(new File(file));
write() 例:ImageIO.write(imd, "JPEG", new File("C:\\test"+k+".gif"));
//具体方法可以查找jdk doc
BufferedImage 类是一个Image类的子类,与Image不同的是,它是在内存中创建和修改的,你可以显示它也可以不显示它,这就看你的具体需求了。这里因为我用于图像的识别所以就不需要显示出来了。你可以通过ImageIO的方法来读取一个文件到BufferedImage,也可以将其写回一个文件中去。类似的操作可以看前面的两个方法。以及参考jdk doc
因为我要识别类似于身份验证的一个数字串图片,所以我考虑把这些数字分离出来,存在不同的图像内,这里BufferedImage类提供一个很方便的办法。
getSubimage(int left,int top,int width,int height)
例:    BufferedImage newim[]=new BufferedImage[4];
newim[0]=imd.getSubimage(4,0,10,18);
newim[1]=imd.getSubimage(13,0,10,18);
newim[2]=imd.getSubimage(22,0,10,18);
newim[3]=imd.getSubimage(31,0,10,18);
最后为了得到图像的像素,我们需要的就是得到像素的方法,这个方法有很多,这里我介绍的是
getRGB(int x,int y) 得到特定像素点的RGB值。
例: pix=new int[10*18];pix[i*(10)+j]=newim[k].getRGB(j,i);
现在我们得到了像素,可以看出像素是一个一维数组,你如果不习惯可以考虑保存在一个二维的数组中,然后就来实施你的看家算法,什么小波变换,拉普拉斯算子,尽管来吧。怎么样是不是很方便呢?什么你好像看不太懂,好给你一些源程序好了,包括像素分解和识别算法。

源代码
/*
* Created on 2005-11-29
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
package com.syvin.image;

import java.awt.*;
import java.awt.image.*;
import java.io.FileOutputStream;
import java.io.*;
import java.io.InputStream;
import java.net.URL;
import javax.imageio.*;
public class MyImage{
   BufferedImage imd;//待识别图像

private int iw,ih;//图像宽和高

public final static String path="D:\\jyy\\app\\tomcat\\webapps\\userlogon\\a.jpg";

  static public void main(String args[]) {
   try{
   MyImage app = new MyImage();//构造一个类
   
   String s=app.getImageNum("C:\\无标题.bmp");//得到识别字符串
   System.out.println("recognize result"+s);
   byte[] by=s.getBytes();
   File f=new File("C:\\testfile.txt");
   FileOutputStream fos=new FileOutputStream(f);//写入一个结果文件
   fos.write(by);
   fos.close();
   }catch(Exception e){
    e.printStackTrace();
   }
  }

//构造函数
  public MyImage() throws IOException {
   
    super("Image Test");
    try{
    }catch(Exception e){
     e.printStackTrace();
    } 
  }
//得到图像的值
  public String getImageNum(String file){
   
   StringBuffer sb=new StringBuffer("");
   try{
   imd=ImageIO.read(new File(file));//用ImageIO的静态方法读取图像
BufferedImage newim[]=new BufferedImage[4];
int []x=new int[4];
        //将图像分成四块,因为要处理的文件有四个数字。
newim[0]=imd.getSubimage(4,0,10,18);
newim[1]=imd.getSubimage(13,0,10,18);
newim[2]=imd.getSubimage(22,0,10,18);
newim[3]=imd.getSubimage(31,0,10,18);

for(int k=0;k<4;k++){
 

x[k]=0;

ImageIO.write(newim[k], "JPEG", new File("C:\\test"+k+".gif"));
this.iw=newim[k].getWidth(null);
this.ih=newim[k].getHeight(null);
pix=new int[iw*ih];

//因为是二值图像,这里的方法将像素读取出来的同时,转换为0,1的图像数组。
for(int i=0;i
  for(int j=0;j
   pix[i*(iw)+j]=newim[k].getRGB(j,i);
   if(pix[i*(iw)+j]==-1)
    pix[i*(iw)+j]=0;
   else pix[i*(iw)+j]=1;
   
   x[k]=x[k]+pix[i*(iw)+j];

  }

}
//得到像匹配的数字。
int r=this.getMatchNum(pix);
sb.append(r);
System.out.println("x="+x[k]);
}
   }catch(Exception e){
    e.printStackTrace();
   }
return sb.toString();
}
//数字模板 0-9
  static  int[][] value={
   //num 0;
   {0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,1,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
    },
   //num 1
   {0,0,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num2 
,
//num3
,
//num4
,
//num5
,
//num6
,
//num7
,
//num8
,
//num9
};
 

  //图像像素相减取绝对值得到最小熵的结果。
  public int getMatchNum(int[] pix){
   int result=-1;
   int temp=100;
   int x;
   for(int k=0;k<=9;k++){
     x=0;
    for(int i=0;i
     x=x+Math.abs(pix[i]-value[k][i]); 
    
    }
    /*for(int a=0;a<18;a++){
     for(int b=0;b<10;b++){
      System.out.print(pix[a*10+b]+"-"+value[k][a*10+b]+"|"); 
     
     }
     System.out.println();
    
    }*/
    
    if(x
    {
     temp=x;
     result=k;
    }
    
   }
  
   return result;
  }
 

}

ImageComparerUI——基于Java语言实现的相似图像识别,基于直方图比较算法。 import java.awt.BorderLayout; import java.awt.Color; import java.awt.Dimension; import java.awt.FlowLayout; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.MediaTracker; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; import javax.swing.JButton; import javax.swing.JComponent; import javax.swing.JFileChooser; import javax.swing.JFrame; import javax.swing.JPanel; public class ImageComparerUI extends JComponent implements ActionListener { /** * */ private static final long serialVersionUID = 1L; private JButton browseBtn; private JButton histogramBtn; private JButton compareBtn; private Dimension mySize; // image operator private MediaTracker tracker; private BufferedImage sourceImage; private BufferedImage candidateImage; private double simility; // command constants public final static String BROWSE_CMD = "Browse..."; public final static String HISTOGRAM_CMD = "Histogram Bins"; public final static String COMPARE_CMD = "Compare Result"; public ImageComparerUI() { JPanel btnPanel = new JPanel(); btnPanel.setLayout(new FlowLayout(FlowLayout.LEFT)); browseBtn = new JButton("Browse..."); histogramBtn = new JButton("Histogram Bins"); compareBtn = new JButton("Compare Result"); // buttons btnPanel.add(browseBtn); btnPanel.add(histogramBtn); btnPanel.add(compareBtn); // setup listener... browseBtn.addActionListener(this); histogramBtn.addActionListener(this); compareBtn.addActionListener(this); mySize = new Dimension(620, 500); JFrame demoUI = new JFrame("Similiar Image Finder"); demoUI.getContentPane().setLayout(new BorderLayout()); demoUI.getContentPane().add(this, BorderLayout.CENTER); demoUI.getContentPane().add(btnPanel, BorderLayout.SOUTH); demoUI.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); demoUI.pack(); demoUI.setVisible(true); } public void paint(Graphics g) { Graphics2D g2 = (Graphics2D) g; if(sourceImage != null) { Image scaledImage = sourceImage.getScaledInstance(300, 300, Image.SCALE_FAST); g2.drawImage(scaledImage, 0, 0, 300, 300, null); } if(candidateImage != null) { Image scaledImage = candidateImage.getScaledInstance(300, 330, Image.SCALE_FAST); g2.drawImage(scaledImage, 310, 0, 300, 300, null); } // display compare result info here Font myFont = new Font("Serif", Font.BOLD, 16); g2.setFont(myFont); g2.setPaint(Color.RED); g2.drawString("The degree of similarity : " + simility, 50, 350); } public void actionPerformed(ActionEvent e) { if(BROWSE_CMD.equals(e.getActionCommand())) { JFileChooser chooser = new JFileChooser(); chooser.showOpenDialog(null); File f = chooser.getSelectedFile(); BufferedImage bImage = null; if(f == null) return; try { bImage = ImageIO.read(f); } catch (IOException e1) { e1.printStackTrace(); } tracker = new MediaTracker(this); tracker.addImage(bImage, 1); // blocked 10 seconds to load the image data try { if (!tracker.waitForID(1, 10000)) { System.out.println("Load error."); System.exit(1); }// end if } catch (InterruptedException ine) { ine.printStackTrace(); System.exit(1); } // end catch if(sourceImage == null) { sourceImage = bImage; }else if(candidateImage == null) { candidateImage = bImage; } else { sourceImage = null; candidateImage = null; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值