题目链接:CF244|DIV2
今天只有DIV2,一不小心就会掉Rating, 还好搞出了C。。。(还是crime专场。。)
A:简单题。题意是一个警察只能阻止一个犯罪, 给出一个数字序列K, -1表示有犯罪发生, 否则表示有K个警察,问会有多少次犯罪发生, 简单的统计一下即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#define lowbit(x) ((x) & (-x))
using namespace std;
const int N = 1e5 + 10;
int main(){
int n;
scanf("%d", &n);
int sum = 0, ans = 0;
for(int i = 0; i < n; ++i){
int x;
scanf("%d", &x);
if(x == -1){
if(sum < 1){
++ans;
}
else --sum;
}
else sum += x;
}
printf("%d\n", ans);
return 0;
}
B:简单题。 题意:n个犯人,每个人都有一个犯罪值。 现在需要转移C个犯人, 要求转移的C个犯人要连在一起, 而且每个犯人的犯罪值都需要<=K。 扫一遍,判断当前值是否>K,是的话切断前面所有的, 否则判断当前连着的个数, 等于C满足条件。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#define lowbit(x) ((x) & (-x))
using namespace std;
const int N = 2e5 + 10;
int a[N];
int main(){
int n, t, c;
int cnt = 0;
scanf("%d%d%d", &n, &t, &c);
for(int i = 0; i < n; ++i){
scanf("%d", &a[i]);
}
int ans = 0;
int tmp = 0;
for(int i = 0; i < n; ++i){
if(a[i] <= t){
++tmp;
if(tmp >= c) ++ans;
}
else tmp = 0;
}
printf("%d\n", ans);
return 0;
}
C:求强连通分量的统计。
题意:有m个city,每个city都有一个耗费值,n个(x,y)表示A->B可达。现在需要在这些城市中安排一些警察把守。 这些警察把守的城市可以是所在的城市,以及那些可以由当前点可达的城市(可以来回往返的城市, 即与那些存在警察的城市强连通的城市), 现在需要求出最少需要耗费多少值才能使所有城市都可以被警察覆盖到, 以及有多少种选择的方案。
分析:题意很明显, 需要求出每个强连通分量, 然后在强连通分量里面找到最小的值, 以及统计他的个数。 只要在每个强连通分量里面安排这个耗费值最小的城市来放警察就好了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#define lowbit(x) ((x) & (-x))
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
const int MOD = 1e9 + 7;
int a[N];
int stack[N], dfn[N], low[N];
int head[N], belong[N];
int idx, top, num, ct;
bool instack[N];
struct node{
int x,next;
}qu[N*3];
struct no{
int x, y;
}b[N];
bool cmp(no aa, no bb){
if(aa.y != bb.y) return aa.y < bb.y;
return a[aa.x] < a[bb.x];
}
void addedge(int x,int y){
qu[num].x = y;
qu[num].next = head[x];
head[x] = ++num;
}
void Tarjan(int i){
dfn[i] = low[i]= ++idx;
stack[++top] = i;
instack[i] = 1;
int u;
for(int j = head[i]; j != -1; j = qu[j].next){
u = qu[j].x;
if(!dfn[u]){
Tarjan(u);
if(low[u] < low[i]) low[i] = low[u];
}
else if(instack[u] && dfn[u] < low[i])
low[i] = dfn[u];
}
if(dfn[i] == low[i]){
++ct;
do{
u = stack[top--];
instack[u] = 0;
belong[u] = ct;
}while(u != i);
}
}
int main(){
int m, n;
memset(dfn, 0, sizeof(dfn));
memset(belong, -1, sizeof(belong));
memset(head, -1, sizeof(head));
scanf("%d", &m);
for(int i = 1; i <= m; ++i){
scanf("%d", &a[i]);
}
scanf("%d", &n);
for(int i = 0; i < n; ++i){
int x, y;
scanf("%d %d", &x, &y);
addedge(x, y);
}
for(int i = 1; i <= m; ++i){
if(dfn[i] == 0){
Tarjan(i);
}
}
// for(int i = 1; i <= m; ++i){
// printf("%d ", belong[i]);
// }
// printf("\n");
for(int i = 1; i <= m; ++i){
no tmp;
tmp.y = belong[i];
tmp.x = i;
b[i - 1] = tmp;
}
sort(b, b + m, cmp);
// for(int i = 0; i < m; ++i){
// printf("%d %d\n", b[i].x, b[i].y);
// }
LL ans = 1, sum = 0;
for(int i = 0; i < m; ){
no j = b[i];
sum += a[j.x];
int cc = 0;
while(i < m && b[i].y == j.y){
if(a[b[i].x] == a[j.x]) ++cc;
++i;
}
// printf("cc = %d\n", cc);
ans = ans * (LL)cc % MOD;
}
printf("%I64d %I64d\n", sum, ans);
return 0;
}