求最长上升子序列总结

1.动态规划(O(n^2))

动态规划是求解 LIS 问题的经典方法。它通过构建一个数组 dpdp[i] 表示以 a[i] 结尾的最长上升子序列的长度。

实现思路

  • 初始化 dp 数组,dp[i] 初始化为 1,表示每个元素自身都可以作为一个长度为 1 的子序列。
  • 对每个元素 a[i],遍历其之前的所有元素 a[j],如果 a[i] > a[j],则 dp[i] = max(dp[i], dp[j] + 1)
  • 最后返回 dp 数组中的最大值。
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();
        if (n == 0) return 0;
        vector<int> dp(n, 1);
        int maxLen = 1;
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            maxLen = max(maxLen, dp[i]);
        }
        return maxLen;
    }
    

2.动态规划 + 二分查找(O(n log n))

为了优化 O(n^2) 的动态规划方法,可以结合二分查找来提高效率。这种方法利用一个辅助数组 dp该数组并不代表实际的 LIS,而是用于维护可能的 LIS 结尾元素的最小值。

实现步骤:

  • 初始化一个空的 dp 数组。
  • 对于每个元素 a[i],使用 lower_bounddp 中找到第一个不小于 a[i] 的位置 it
    • 如果 itdp.end(),则将 a[i] 添加到 dp 的末尾。
    • 否则,用 a[i] 替换 dp[it]

最终,dp 数组的长度即为 LIS 的长度。

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int LIS(vector<int>& a) {
    vector<int> dp; //类似于栈

    for (int i = 0; i < a.size(); i++) {
        // 在dp中找到第一个不小于 a[i] 的元素
        auto it = lower_bound(dp.begin(), dp.end(), a[i]);

        // 如果没有找到,则将 a[i] 压入栈
        if (it == dp.end()) {
            dp.push_back(a[i]);
        } else {
            // 如果找到了,则替换掉那个元素
            *it = a[i];
        }
    }
    return dp.size();
}

int main() {
    int n; cin >> n;
    vector<int> a(n);
    for(int i = 0; i < n; i++) cin >> a[i];
   
    cout << LIS(a) << endl;
    return 0;
}

3.分治法

分治法是一种常见的算法策略,特别适用于有特定要求或结构的问题。在求解最长上升子序列(LIS)的问题时,分治法通常会将问题分成左右两部分,然后分别求解每一部分的 LIS,最后将结果合并。这种方法特别适用于有一些特殊约束的情况,比如必须包含某个特定元素(例如中间元素)。

1. 确定分治的分界点

首先,确定数组的中间位置 mid。对于数组长度为 n 的数组:

int mid = (n - 1 ) / 2 // 不分奇偶

这个中间位置的元素通常是一个需要保留的元素,它在求解 LIS 的过程中起到了连接左右部分的关键作用。

2. 构造 b 数组

接下来,通过筛选 a 数组的元素,构造一个新的数组 b,以便简化后续的 LIS 计算:

  • 对于 mid 左侧的元素,保留所有小于 a[mid] 的元素。
  • 保留 mid 位置的元素 a[mid] 本身。
  • 对于 mid 右侧的元素,保留所有大于 a[mid] 的元素。

通过这种筛选,b 数组包含了那些可能对 LIS 有贡献的元素,排除了不必要的元素,简化了问题的规模。

3. b 数组上计算 LIS

在构造完 b 数组后,使用标准的 LIS 求解方法(通常是动态规划结合二分查找的 O(n log n) 方法)来计算 b 数组的 LIS。具体步骤如下:

  • 初始化一个空的动态数组 dp,用于存储 LIS 的候选结尾元素。
  • 遍历 b 数组,对于每个元素 b[i],使用 lower_bound 函数查找 dp 中第一个不小于 b[i] 的位置:
    • 如果 b[i]dp 中的所有元素都大,则将其添加到 dp 的末尾。
    • 否则,替换 dp 中对应位置的元素,以保持 dp 的单调递增性。

最终,dp 数组的长度即为 b 数组的 LIS 长度。

4. 计算需要删除的元素数量

最后,通过 n - dp.size() 计算需要删除的元素数量,即原数组长度减去 LIS 的长度。这个值代表了为了使剩下的元素构成一个包含 a[mid] 的最长上升子序列,所需要删除的元素的最小数量。

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 20010;
int a[N],b[N],dp[N];

int main() {
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int t; cin >> t;
    while(t --){
        int n; cin >> n;
        int mid = (n - 1) / 2;
        for(int i = 0; i < n; i++) cin >> a[i];
        int cnt = 0;
        // 构造b数组维护单调序列
        for(int i = 0; i < n; i ++){
            if(i < mid && a[i] < a[mid]) b[cnt ++] = a[i];
            else if( i == mid) b[cnt ++] = a[i];
            else if(i > mid && a[i] > a[mid]) b[cnt ++] = a[i];
        }
        int len = 0;
        for(int i = 0; i < cnt; i++){
            // 返回第一个大于等于b[i]的数
            int indix = lower_bound(dp,dp + len + 1,b[i]) - dp;
            dp[indix] = b[i];
            len = max(len,indix);
        }
        cout <<n - len << '\n' ;
    }
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值