排序:
默认
按更新时间
按访问量

阿里天池大赛[人工智能辅助糖尿病遗传风险预测]赛后总结

题目以及数据介绍 人工智能辅助糖尿病遗传风险预测 初始思想 1.从头开始,先看一下初始数据以及数据的简单分析吧 训练数据,最后一列是血糖: A榜测试数据 第九个特征与标签的关系分布 第三十八个 各个特征计数(有点糊) 各个特征(标签)的标准差 热力图...

2018-03-06 20:11:13

阅读数:391

评论数:3

去除读文件的换行

用strip() 不用split()>>> a = ' 123' >>> a.strip() '123' >>> a='\t\tabc' 'abc' >>> a = 'sdff\r\n' >>> a...

2017-12-06 21:51:49

阅读数:97

评论数:0

基于sklearn的序列处理 : LabelEncoder 与 OneHotEncoder

LabelEncoder直接上代码# coding:utf-8from sklearn import preprocessinglabel_encode = preprocessing.LabelEncoder() # 建立模型 label_encode.fit([[-1], [13], [45...

2017-12-02 21:11:46

阅读数:393

评论数:0

Antenna Placement poj3020(二分图最大匹配/最小路径覆盖)

Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9279   Accepted: 4584 Description The Global Aerial Resear...

2017-12-02 17:52:56

阅读数:60

评论数:0

Asteroids poj3041 (二分图最大匹配 / 二分图中最小点覆盖问题)

Asteroids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21522   Accepted: 11697 Description Bessie wants to navigate her ...

2017-12-02 17:52:40

阅读数:73

评论数:0

Period poj1961(kmp 进阶 next数组使用)

Period Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 17279   Accepted: 8328 Description For each prefix of a given string S...

2017-12-02 17:51:29

阅读数:36

评论数:0

阿里天池大赛[商场中精确定位用户所在店铺]赛后总结

题目以及数据介绍 商场中精确定位用户所在店铺 主要就是根据各种信息确定某个user到底是在那个shop中 具体的csv文件 AB榜测试集合: user训练数据: mall shop对照表: 初始思想 1.首先 拿过来一看 就是进行特征分析, 这么...

2017-11-28 19:31:49

阅读数:1286

评论数:1

Ubuntu16.04+丽台K620+CUDA8.0+cuDNN6.0搭建Tensorflow-GPU

基本步骤驱动更新 看你的电脑是否支持CUDA 一般英伟达的新卡都支持 需要更新电脑的显卡驱动(貌似CUDA内含有驱动) 系统设置->软件和更新->附加驱动 选择一个nvidia驱动应用更新(u16.04使用375未见循环登录情况)下载1.下载cuda官网下载 https://dev...

2017-11-01 10:55:52

阅读数:563

评论数:0

python 中赋值 copy() 与 ' = ' 号以及比较符'=='号 与 'is'

关于比较符号’==’号 与 ‘is’这里主要是为下文铺垫 == 比较操作符:用来比较两个对象是否相等,value做为判断因素 is 同一性运算符:比较判断两个对象是否相同,id做为判断因素关于copy()与 =主要是今天在写数组的时候发现了 这个问题 想到了 python中的数组赋值以及对...

2017-10-19 21:52:32

阅读数:227

评论数:0

PAT - 1107. Social Clusters (30) 并查集

1107.Social Clusters (30)When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with...

2017-09-16 11:27:05

阅读数:126

评论数:1

关于sklearn.svm.SVC与.NuSVC的区别以及参数介绍

0. 区别SVC与NuSVC是类似的方法,但是接受稍微不同的参数集合并具有不同的数学公式 ,并且NuSVC可以使用参数来控制支持向量的个数 , 以下代码默认的是多分类1. SVC # coding:utf-8from sklearn import svm from numpy import *X ...

2017-08-24 22:05:06

阅读数:1536

评论数:0

关于数据降维函数sklearn-PCA的使用

1. PCA介绍PCA是主成分分析,用来降维,用少量的变量去解释大部分变量,使得变量维度减少,从而减少计算量。2. 调用方法 以及 参数的简单介绍 # 先看看PCA构造函数中的默认参数 ''' def __init__(self, n_components=None, copy=True, whi...

2017-08-23 22:03:33

阅读数:426

评论数:0

利用Apriori算法进行关联分析

1. Apriori算法Apriori算法是一种挖掘关联规则的频繁项集算法,这些关系有两种形式 : 频繁项集和关联规则。 举个例子就知道了:著名的”尿布与啤酒”。 这就是通过关联分析来获取到的结果。2. 名词解释前后文中存在的名词都放在这里了 1. 频繁项集 : 在事件集合中出现频繁的项目...

2017-08-19 15:45:29

阅读数:452

评论数:0

AdaBoost元算法数据集

# 训练集 ''' 2.000000 1.000000 38.500000 66.000000 28.000000 3.000000 3.000000 0.000000 2.000000 5.000000 4.000000 4.00000...

2017-08-17 16:45:06

阅读数:250

评论数:0

利用AdaBoost元算法提高分类性能

1. 元算法介绍 做重要决定时,大家可能会考虑多个权威的意见而不是一个人的意见,机器学习中也是如此,这就是元算法的背后思想。元算法是对其他算法组合的一种方式。 优点:泛化错误低,易编码,可以用在大部分分类器上,无参数调整问题 缺点:对离群点敏感 2. AdaBoost思想 以及 涉及公式2.1 简...

2017-08-17 16:43:25

阅读数:496

评论数:0

神经网络NN简单理解以及算法

1.什么是神经网络1.1 背景 : 以人脑中的神经网络为启发,历史上出现过很多不同版本 最著名的算法是1980年的 backpropagation 1.2 多层向前神经网络(Multilayer Feed-Forward Neural Network) Backpropagation被使用在多层...

2017-08-15 16:07:42

阅读数:1186

评论数:4

简单Trie树

#include #include #include using namespace std; const int maxn=500010; int num; int indegree[maxn]; int root[maxn]; char sx[12],sy[12]; typedef...

2017-08-12 15:05:34

阅读数:190

评论数:0

Power Strings poj2406 (kmp 进阶 next数组使用)

Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 46647   Accepted: 19516 Description Given two strings a and b w...

2017-08-12 15:04:58

阅读数:220

评论数:0

支持向量机(SVM)理解以及在sklearn库中的简单应用

1. 什么是支持向量机 英文Support Vector Machines,简写SVM . 主要是基于支持向量来命名的,什么是支持向量后面会讲到…….最简单的SVM是用来二分类的,在深度学习崛起之前被誉为最好的现成分类器,”现成”指的是数据处理好,SVM可以直接拿来使用 … 2. 名词解释2.1...

2017-08-12 12:12:43

阅读数:1801

评论数:4

支持向量机-数据集

# 训练集 ''' 1.000000 0.067732 3.176513 1.000000 0.427810 3.816464 1.000000 0.995731 4.550095 1.000000 0.738336 4.256571 1.000000 0.981083 4.560815 1.00...

2017-08-12 09:08:14

阅读数:436

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭