[NOIP2002 普及组] 产生数题解

题目描述

给出一个整数 n 和 k 个变换规则。

规则:

  • 一位数可变换成另一个一位数。
  • 规则的右部不能为零。

例如:n=234,k=2。有以下两个规则:

  • 2⟶5。
  • 3⟶6。

上面的整数 234 经过变换后可能产生出的整数为(包括原数):

  • 234。
  • 534。
  • 264。
  • 564。

共 44 种不同的产生数。

现在给出一个整数 n 和 k 个规则。求出经过任意次的变换(0 次或多次),能产生出多少个不同整数。

仅要求输出个数。

输入格式

第一行两个整数 n,k,含义如题面所示。

接下来 kk 行,每行两个整数 xi,yi,表示每条规则。

输出格式

共一行,输出能生成的数字个数。

输入输出样例

输入 #1

234 2
2 5
3 6

输出 #1

4

Debug写了一个下午,写写题解纪念一下,顺便复习刚学的Floyed。

【算法分析】

这道题目的一种思路是对数字进行宽度优先搜索,但是本蒟蒻尝试写了一下,发现非常麻烦。 具体可参考传送门

另外还有一些本蒟蒻尚不能理解的高端算法,亦可参考传送门

题目只要求输出方案总数,那么就要引出我们的算法了,先请出今天的主人公——弗洛伊德(Floyed)算法!

【算法讲解】

看这样一道题目:

给出一张含6个点,9条边的图,要求求出每两个点之间的最短距离。

怎么做呢?我刚学的时候考虑的是宽度优先搜索,但这并非正解,为什么呢?

看图,若以宽度优先搜索解此题,我们将观察到栈的变化如下:

可以看到,宽度优先搜索的想法并不现实,因为宽度优先搜索中,一个点一旦被访问,就不会被二次访问,因此不会更新最优解。要修改宽度优先搜索,就变成了另外一种算法——SPFA了。而且,宽度优先搜索每辆点之间的距离是1,只能计算经过点最少的路径。

回到这里,如何处理这个问题呢?观察1到4的最短路径是1-3-4,可见如果选取中转点,可以使路径变短,这个过程叫做松弛

以dis[i][j]表示从i到j的最短距离,则有:

dis[i,j]=min(dis[i,j],dis[i,k]+dis[k,j]);

其中1<=i,j,k<=n。

于是我们得到了一个类似区间DP的算法,它的基本框架如下:

memset(dis,0x3f,sizeof(dis)); //初始化为极大值
for(int i=1;i<=n;i++) dis[i][i]=0; //自己到自己不必花费
for(int k=1;k<=n;k++)
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(dis[i][j]<dis[i][k]+dis[k][j]) dis[i][j]=dis[i][k]+dis[k][j];
        }
    }
}

基本思想是枚举中转点和出发、到达的点,若有更优解就更新更优解。

问题又来了,为什么k要放在外面呢?

原因很简单,DP要保证正确性,就要保证每阶段的决策都是最优解,然而dis[i,k]和dis[k,j]未必在dis[i,j]之前算出,因此会导致一种错误。譬如下图中,从6到7的最短路径本是6-1-5-4-1,但dis[7,5],dis[7,1]和dis[7,4]并未算出,于是遍历了1-7几个中转点后,dis[6,7]还未更新为最优解,就因为i,j在循环外部而不会更新解了。

弗洛伊德算法的时间复杂度是O(N^3),可以处理负边权,也可以求出每两个点之间的最短路。

另外,弗洛伊德算法还可以用于判断两点之间是否有相连的路:

memset(dis,0,sizeof(dis));
for(int k=0;k<=9;k++)
{
    for(int i=0;i<=9;i++)
    {
        for(int j=0;j<=9;j++)
        {
            if(dis[i][j] || (dis[i][k]&&dis[k][j])) dis[i][j]=1;
        }
    }
}

经历这么多以后,我们终于迎来了最爱的

【AC代码】

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char ans[40],s[40];int K,check[10],dis[10][10],t[10];

void times(int tmp)
{
    int l=strlen(ans),x=0,cnt=0;
    if(tmp==10)
    {
        for(int i=l;i>0;i--) ans[i]=ans[i-1];
        ans[0]='0';
    }
    else
    {
        for(int i=0;i<l;i++)
        {
            x=(ans[i]-'0')*tmp+cnt;
            cnt=x;
            if(x>=10)
            {
                x%=10;    
            }
            ans[i]=x+'0';
            cnt=(cnt-x)/10;
        }
        if(cnt) ans[l]=cnt+'0';
    }
}
int main()
{
    scanf("%s %d",s,&K);
    int L=strlen(s);
    for(int i=0;i<L;i++) 
        check[s[i]-'0']++;
    ans[0]='1';
    memset(dis,0,sizeof(dis));
    
    for(int i=1;i<=K;i++)
    {
        int a,b;
        cin>>a>>b;
        dis[a][b]=1;
    } 
    
    for(int k=0;k<=9;k++)
    {
        for(int i=0;i<=9;i++)
        {
            for(int j=0;j<=9;j++)
            {
                if(dis[i][j] || (dis[i][k]&&dis[k][j])) dis[i][j]=1;
            }
        }
    }
    for(int i=0;i<=9;i++)
        dis[i][i]=0; //自己不能变回自己 
    for(int i=0;i<=9;i++) 
    {
        int tmp=1;
        for(int j=0;j<=9;j++)
        {
            if(dis[i][j] && check[i]) tmp++;
        }
        if(s[0]-'0'==i && dis[i][0]) tmp--;//处理最高位不能变为0的情况 
        t[i]=tmp;
    }
    for(int i=0;i<L;i++) if(t[s[i]-'0']) times(t[s[i]-'0']);
    
    int L_=strlen(ans);
    for(int i=L_-1;i>=0;i--) cout<<ans[i];
    return 0;
}

上面的程序片段已经有详细注释了,我犯懒就不贴了

【总结】

1、弗洛伊德算法的时间复杂度是O(N^3),数据范围小于500时适用。可以处理负边权。可以求出每两个点之间的最短路,适用于多次提问的题目。弗洛伊德算法还可以用于判断两点之间是否有通路。不要忘了k要放在最外层,不要忘了初始化。

PS:码字不易,希望支持!

在百忙之中写一篇题解也比较辛苦,别忘了点个赞!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值