本次实验分别让0的第1张图片到第9张图片和2的第1张图片分类。然后再让0的第1,2张,3,4张…8,9张图片和2的第1张图片分类,看看两组数据有什么关系。
第一部分数据,1张图片和1张图片分类
(0[n],2[1])---81*30*2---(1,0)(0,1) n=1,2…9
| f2[0] | f2[1] | 迭代次数n | 平均准确率p-ave | δ | 耗时ms/次 | 耗时ms/199次 | 耗时 min/199 | 最大准确率p-max | 迭代次数标准差 | pave标准差 | |
| 0[1],2[1] | 0.502512 | 0.4974879 | 43337.065 | 0.7746286 | 1.00E-04 | 1014.0251 | 201825 | 3.36375 | 0.7947316 | 1714.6271 | 0.0078051 |
| 0[2],2[1] | 0.3618366 | 0.6381634 | 39428.513 | 0.6697154 | 1.00E-04 | 910.21608 | 181148 | 3.0191333 | 0.6983101 | 1526.1862 | 0.0115177 |
| 0[3],2[1] | 0.0654133 | 0.9345866 | 42304.126 | 0.8722614 | 1.00E-04 | 964.87437 | 192041 | 3.2006833 | 0.8812127 | 1926.7298 | 0.0034939 |
| 0[4],2[1] | 0.2412577 | 0.7587424 | 41168.382 | 0.8031534 | 1.00E-04 | 941.36683 | 187332 | 3.1222 | 0.8195825 | 1939.6639 | 0.00698 |
| 0[5],2[1] | 0.6281151 | 0.3718849 | 44140.638 | 0.9079193 | 1.00E-04 | 993.55276 | 197718 | 3.2953 | 0.917992 | 1808.8097 | 0.0039003 |
| 0[6],2[1] | 0.0704375 | 0.9295625 | 43375.829 | 0.8471657 | 1.00E-04 | 971.34673 | 193298 | 3.2216333 | 0.8593439 | 1993.3655 | 0.0046175 |
| 0[7],2[1] | 0.2312094 | 0.7687906 | 40382.593 | 0.8858857 | 1.00E-04 | 935.49246 | 186179 | 3.1029833 | 0.9000994 | 1797.8539 | 0.0049712 |
| 0[8],2[1] | 0.2261853 | 0.7738147 | 40953.844 | 0.9054492 | 1.00E-04 | 948.52764 | 188757 | 3.14595 | 0.9130219 | 1721.9027 | 0.0032987 |
| 0[9],2[1] | 0.3166195 | 0.6833805 | 45157.543 | 0.8177193 | 1.00E-04 | 1041.9899 | 207357 | 3.45595 | 0.8369781 | 1948.7476 | 0.0062181 |
比如第一组数据0[1],2[1],就是用0的第1张图片和2的第1张图片分类,收敛标准是1e-4,收敛199次,统计平均值。
第二部分数据,两张图片和1张图片分类
(0[n,n+1],2[1])---81*30*2---(1,0)(0,1) n=1,2…8
| f2[0] | f2[1] | 迭代次数n | 平均准确率p-ave | δ | 耗时ms/次 | 耗时ms/199次 | 耗时 min/199 | 最大准确率p-max | 迭代次数标准差 | pave标准差 | |
| 0[1,2],2[1] | 0.9999005 | 9.95E-05 | 31098.819 | 0.832455 | 1.00E-04 | 733.75377 | 146017 | 2.4336167 | 0.8459245 | 2191.9714 | 0.0060506 |
| 0[2,3],2[1] | 0.9948763 | 0.0051238 | 36000.693 | 0.8909708 | 1.00E-04 | 826.72362 | 164518 | 2.7419667 | 0.8991054 | 2211.6813 | 0.0028445 |
| 0[3,4],2[1] | 0.8843456 | 0.1156545 | 42453.608 | 0.8444134 | 1.00E-04 | 990.82915 | 197193 | 3.28655 | 0.8548708 | 2211.6829 | 0.0045889 |
| 0[4,5],2[1] | 0.9999004 | 9.96E-05 | 34925 | 0.8732754 | 1.00E-04 | 814.09045 | 162007 | 2.7001167 | 0.8846918 | 1954.6403 | 0.003654 |
| 0[5,6],2[1] | 0.7989354 | 0.2010646 | 47115.211 | 0.814922 | 1.00E-04 | 1089.6683 | 216861 | 3.61435 | 0.8290258 | 1998.3496 | 0.00476 |
| 0[6,7],2[1] | 0.9999004 | 9.96E-05 | 31468.709 | 0.8783355 | 1.00E-04 | 735.23116 | 146312 | 2.4385333 | 0.888171 | 2061.6384 | 0.0030572 |
| 0[7,8],2[1] | 0.6884047 | 0.3115954 | 40630.317 | 0.9185815 | 1.00E-04 | 940.56784 | 187189 | 3.1198167 | 0.9259443 | 1985.746 | 0.0029587 |
| 0[8,9],2[1] | 0.9999005 | 9.96E-05 | 24829.905 | 0.8685325 | 1.00E-04 | 584.75377 | 116366 | 1.9394333 | 0.8846918 | 2110.2858 | 0.0040146 |
比如第一组数据0[1,2],2[1]就是用0的第1张和第2张图片与2的第1张图片做训练集。
第一部分和第二部分的数据放在一起比较
| 0[1],2[1] | 0.502512 | 0.4974879 | 43337.065 | 0.7746286 | 1.00E-04 | 1014.0251 | 201825 | 3.36375 | 0.7947316 | 1714.6271 | 0.0078051 |
| 0[2],2[1] | 0.3618366 | 0.6381634 | 39428.513 | 0.6697154 | 1.00E-04 | 910.21608 | 181148 | 3.0191333 | 0.6983101 | 1526.1862 | 0.0115177 |
| 0[1,2],2[1] | 0.9999005 | 9.95E-05 | 31098.819 | 0.832455 | 1.00E-04 | 733.75377 | 146017 | 2.4336167 | 0.8459245 | 2191.9714 | 0.0060506 |
| 0[2],2[1] | 0.3618366 | 0.6381634 | 39428.513 | 0.6697154 | 1.00E-04 | 910.21608 | 181148 | 3.0191333 | 0.6983101 | 1526.1862 | 0.0115177 |
| 0[3],2[1] | 0.0654133 | 0.9345866 | 42304.126 | 0.8722614 | 1.00E-04 | 964.87437 | 192041 | 3.2006833 | 0.8812127 | 1926.7298 | 0.0034939 |
| 0[2,3],2[1] | 0.9948763 | 0.0051238 | 36000.693 | 0.8909708 | 1.00E-04 | 826.72362 | 164518 | 2.7419667 | 0.8991054 | 2211.6813 | 0.0028445 |
| 0[7],2[1] | 0.2312094 | 0.7687906 | 40382.593 | 0.8858857 | 1.00E-04 | 935.49246 | 186179 | 3.1029833 | 0.9000994 | 1797.8539 | 0.0049712 |
| 0[8],2[1] | 0.2261853 | 0.7738147 | 40953.844 | 0.9054492 | 1.00E-04 | 948.52764 | 188757 | 3.14595 | 0.9130219 | 1721.9027 | 0.0032987 |
| 0[7,8],2[1] | 0.6884047 | 0.3115954 | 40630.317 | 0.9185815 | 1.00E-04 | 940.56784 | 187189 | 3.1198167 | 0.9259443 | 1985.746 | 0.0029587 |
| 0[5],2[1] | 0.6281151 | 0.3718849 | 44140.638 | 0.9079193 | 1.00E-04 | 993.55276 | 197718 | 3.2953 | 0.917992 | 1808.8097 | 0.0039003 |
| 0[6],2[1] | 0.0704375 | 0.9295625 | 43375.829 | 0.8471657 | 1.00E-04 | 971.34673 | 193298 | 3.2216333 | 0.8593439 | 1993.3655 | 0.0046175 |
| 0[5,6],2[1] | 0.7989354 | 0.2010646 | 47115.211 | 0.814922 | 1.00E-04 | 1089.6683 | 216861 | 3.61435 | 0.8290258 | 1998.3496 | 0.00476 |
有4种情况分类准确率是位于二者之间[3,4],[4,5],[6,7],[8,9];
有3种情况分类准确率比二者都大[1,2],[2,3],[7,8];
有1种最特殊的分类准确率比二者都小[5,6]
再比较迭代次数
有2种情况迭代次数比二者都大[3,4],[5,6];
有5种情况迭代次数比二者都小[1,2],[2,3], [4,5],[6,7] [8,9];
仅有1种情况迭代次数位于二者之间[7,8];
总结这两组数据,如果二者混合迭代次数变小了分类准确率变大或者位于二者之间;如果二者混合迭代次数变大了,分类准确率变小或位于二者之间。或者更简洁些如果混合后的迭代次数变小了,分类准确率可能变大;如果二者混合后迭代次数变大,分类准确率可能会变小。
本文对比了单一图片与两张图片分类的实验结果,发现混合数据时迭代次数与准确率的关系:迭代次数减少时,准确率可能提高;反之,增加时准确率下降。这揭示了数据组合对算法性能的影响。
4322

被折叠的 条评论
为什么被折叠?



