神经网络训练集的图片到底是如何相互作用的?

本文对比了单一图片与两张图片分类的实验结果,发现混合数据时迭代次数与准确率的关系:迭代次数减少时,准确率可能提高;反之,增加时准确率下降。这揭示了数据组合对算法性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本次实验分别让0的第1张图片到第9张图片和2的第1张图片分类。然后再让0的第1,2张,3,4张…8,9张图片和2的第1张图片分类,看看两组数据有什么关系。

 

第一部分数据,1张图片和1张图片分类

(0[n],2[1])---81*30*2---(1,0)(0,1) n=1,2…9

 

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

迭代次数标准差

pave标准差

0[1],2[1]

0.502512

0.4974879

43337.065

0.7746286

1.00E-04

1014.0251

201825

3.36375

0.7947316

1714.6271

0.0078051

0[2],2[1]

0.3618366

0.6381634

39428.513

0.6697154

1.00E-04

910.21608

181148

3.0191333

0.6983101

1526.1862

0.0115177

0[3],2[1]

0.0654133

0.9345866

42304.126

0.8722614

1.00E-04

964.87437

192041

3.2006833

0.8812127

1926.7298

0.0034939

0[4],2[1]

0.2412577

0.7587424

41168.382

0.8031534

1.00E-04

941.36683

187332

3.1222

0.8195825

1939.6639

0.00698

0[5],2[1]

0.6281151

0.3718849

44140.638

0.9079193

1.00E-04

993.55276

197718

3.2953

0.917992

1808.8097

0.0039003

0[6],2[1]

0.0704375

0.9295625

43375.829

0.8471657

1.00E-04

971.34673

193298

3.2216333

0.8593439

1993.3655

0.0046175

0[7],2[1]

0.2312094

0.7687906

40382.593

0.8858857

1.00E-04

935.49246

186179

3.1029833

0.9000994

1797.8539

0.0049712

0[8],2[1]

0.2261853

0.7738147

40953.844

0.9054492

1.00E-04

948.52764

188757

3.14595

0.9130219

1721.9027

0.0032987

0[9],2[1]

0.3166195

0.6833805

45157.543

0.8177193

1.00E-04

1041.9899

207357

3.45595

0.8369781

1948.7476

0.0062181

比如第一组数据0[1],2[1],就是用0的第1张图片和2的第1张图片分类,收敛标准是1e-4,收敛199次,统计平均值。

 

第二部分数据,两张图片和1张图片分类

(0[n,n+1],2[1])---81*30*2---(1,0)(0,1) n=1,2…8

 

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

迭代次数标准差

pave标准差

0[1,2],2[1]

0.9999005

9.95E-05

31098.819

0.832455

1.00E-04

733.75377

146017

2.4336167

0.8459245

2191.9714

0.0060506

0[2,3],2[1]

0.9948763

0.0051238

36000.693

0.8909708

1.00E-04

826.72362

164518

2.7419667

0.8991054

2211.6813

0.0028445

0[3,4],2[1]

0.8843456

0.1156545

42453.608

0.8444134

1.00E-04

990.82915

197193

3.28655

0.8548708

2211.6829

0.0045889

0[4,5],2[1]

0.9999004

9.96E-05

34925

0.8732754

1.00E-04

814.09045

162007

2.7001167

0.8846918

1954.6403

0.003654

0[5,6],2[1]

0.7989354

0.2010646

47115.211

0.814922

1.00E-04

1089.6683

216861

3.61435

0.8290258

1998.3496

0.00476

0[6,7],2[1]

0.9999004

9.96E-05

31468.709

0.8783355

1.00E-04

735.23116

146312

2.4385333

0.888171

2061.6384

0.0030572

0[7,8],2[1]

0.6884047

0.3115954

40630.317

0.9185815

1.00E-04

940.56784

187189

3.1198167

0.9259443

1985.746

0.0029587

0[8,9],2[1]

0.9999005

9.96E-05

24829.905

0.8685325

1.00E-04

584.75377

116366

1.9394333

0.8846918

2110.2858

0.0040146

比如第一组数据0[1,2],2[1]就是用0的第1张和第2张图片与2的第1张图片做训练集。

 

第一部分和第二部分的数据放在一起比较

0[1],2[1]

0.502512

0.4974879

43337.065

0.7746286

1.00E-04

1014.0251

201825

3.36375

0.7947316

1714.6271

0.0078051

0[2],2[1]

0.3618366

0.6381634

39428.513

0.6697154

1.00E-04

910.21608

181148

3.0191333

0.6983101

1526.1862

0.0115177

0[1,2],2[1]

0.9999005

9.95E-05

31098.819

0.832455

1.00E-04

733.75377

146017

2.4336167

0.8459245

2191.9714

0.0060506

            

0[2],2[1]

0.3618366

0.6381634

39428.513

0.6697154

1.00E-04

910.21608

181148

3.0191333

0.6983101

1526.1862

0.0115177

0[3],2[1]

0.0654133

0.9345866

42304.126

0.8722614

1.00E-04

964.87437

192041

3.2006833

0.8812127

1926.7298

0.0034939

0[2,3],2[1]

0.9948763

0.0051238

36000.693

0.8909708

1.00E-04

826.72362

164518

2.7419667

0.8991054

2211.6813

0.0028445

            

0[7],2[1]

0.2312094

0.7687906

40382.593

0.8858857

1.00E-04

935.49246

186179

3.1029833

0.9000994

1797.8539

0.0049712

0[8],2[1]

0.2261853

0.7738147

40953.844

0.9054492

1.00E-04

948.52764

188757

3.14595

0.9130219

1721.9027

0.0032987

0[7,8],2[1]

0.6884047

0.3115954

40630.317

0.9185815

1.00E-04

940.56784

187189

3.1198167

0.9259443

1985.746

0.0029587

            

0[5],2[1]

0.6281151

0.3718849

44140.638

0.9079193

1.00E-04

993.55276

197718

3.2953

0.917992

1808.8097

0.0039003

0[6],2[1]

0.0704375

0.9295625

43375.829

0.8471657

1.00E-04

971.34673

193298

3.2216333

0.8593439

1993.3655

0.0046175

0[5,6],2[1]

0.7989354

0.2010646

47115.211

0.814922

1.00E-04

1089.6683

216861

3.61435

0.8290258

1998.3496

0.00476

有4种情况分类准确率是位于二者之间[3,4],[4,5],[6,7],[8,9];

有3种情况分类准确率比二者都大[1,2],[2,3],[7,8];

有1种最特殊的分类准确率比二者都小[5,6]

 

再比较迭代次数

有2种情况迭代次数比二者都大[3,4],[5,6];

有5种情况迭代次数比二者都小[1,2],[2,3], [4,5],[6,7] [8,9];

仅有1种情况迭代次数位于二者之间[7,8];

 

总结这两组数据,如果二者混合迭代次数变小了分类准确率变大或者位于二者之间;如果二者混合迭代次数变大了,分类准确率变小或位于二者之间。或者更简洁些如果混合后的迭代次数变小了,分类准确率可能变大;如果二者混合后迭代次数变大,分类准确率可能会变小。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值