处理阿里云ECS服务器提示的漏洞 购买阿里云服务器后, 一段时间, 提示高危漏洞, 而且很多, 有高危/中危/低危/严重等几个等级.当点击(一键修复或者生成修复命令时,开始让买买买了)其实完全可以自己手动处理。
Jenkins获取git文件变更列表、提交ID、提交人、提交信息 GitLab 事件触发 Jenkins 构建只是一个启动信号,获取变更文件列表需要知晓上一次构建时某个仓库的版本号,这里 Jenkins 的插件 git-plugin 已经帮我们实现了这部分工作。所以只需要通过 git-plugin 检出代码即可。
成功解决Request nacos server failed异常 Nacos2.0的服务端完全兼容1.X客户端。Nacos2.0客户端由于使用了gRPC,无法兼容Nacos1.X服务端,请勿使用2.0以上版本客户端连接Nacos1.X服务端。Nacos2.0版本相比1.X新增了gRPC的通信方式,因此需要增加2个端口。新增端口是在配置的主端口(server.port)基础上,进行一定偏移量自动生成。
再见ip.taobao,全网显示 IP 归属地,用上这个开源库,实现也太简单了! 细心的朋友应该会发现,最近,继新浪微博之后,头条、腾讯、抖音、知乎、快手、小红书等各大平台陆陆续续都上线了“网络用户IP地址显示功能”,境外用户显示的是国家,国内的用户显示的省份,而且此项显示无法关闭,归属地强制显示。但是,之前接入淘宝 IP 库的时候,也经常会遇到服务不可用的情况,并且由于限制了 QPS 为 1,所以如果访问量大的话,就没办法获取了。只有中国的数据精确到了城市,其他国家有部分数据只能定位到国家,后前的选项全部是 0,已经包含了全部你能查到的大大小小的国家。在加载的时候,需要下载仓库中的。.
成功解决Unable to allocate xxx MiB for an array with shape (xxxx, xxxx) 原因数据量太大,导致cpu内存不足导致的解决方法换个性能更好的电脑numpy 在定义数组的时候,采用更低的精度。从float64降低为float32array_ = np.zeros((10000,10000),dtype='float32') # 默认float64修改pycharm的运行内存Help->Find Action->(type “VM Options”)->(Click)“Edit Custom VM Options” 打开pycharm64.exe.
从零开始基于PaddleDetection的目标检测模型训练 从零开始基于PaddleDetection的目标检测模型训练gitee地址:https://gitee.com/paddlepaddle/PaddleDetectiongithub地址:https://github.com/PaddlePaddle/PaddleDetection任选一个下载项目官方文档:https://paddledetection.readthedocs.io/安装安装PaddlePaddle# CUDA10.1python -m pip install paddle
成功解决No module named ‘tensorflow.contrib‘ 错误导包import tensorflow.contrib.layers as layers执行报错No module named 'tensorflow.contrib'报错原因tensorflow 2.0之后版本没有 tensorflow.contrib 我安装的是 tensorflow-2.6.2所以降低tensorflow版本就可以啦解决pip uninstall tensorflowpip install tensorflow==1.14.0如果又出现以下错误ERR
MQTT协议看这一篇就够了,简单全面一发入魂 随着 5G 时代的来临,万物物联的伟大构想正在成为现实。联网的物联网设备在 2018 年已经达到了 70 亿在未来两年,仅智能水电气表就将超过10海量的设备接入和设备管理对网络带宽、通信协议以及平台服务架构都带来了很大挑战。对于物联网协议来说,必须针对性地解决物联网设备通信的几个关键问题:其网络环境复杂而不可靠、其内存和闪存容量小、其处理器能力有限。MQTT 是基于 Publish/Subscribe 模式的物联网通信协议,凭借简单易实现、支持 QoS、报文小等特点,占据了物联网协议的半壁江山:
微服务架构技术选型 微服务架构技术选型Spring Cloud 本身其实只是一套微服务规范,并不是一个拿来即可用的框架,Spring Cloud Netflix 和Spring Cloud Alibaba是为开发者提供了这套规范的实现方式。由于Spring Cloud Netflix 2018年12月12日进入维护模式(Maintenance Mode),所以不太适合长期再使用。故选择Spring Cloud Alibaba的技术方案。一、 Spring Cloud Netflix1. 简介 Spring Clo
分库分表技术选型 1、为什么分库分表数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作,增删改查的开销也会越来越大;另外,由于无法进行分布式式部署,而一台服务器的资源(CPU、磁盘、内存、IO等)是有限的,最终数据库所能承载的数据量、数据处理能力都将遭遇瓶颈。2、分库分表的实施策略分库分表有垂直切分和水平切分两种。垂直切分,即将表按照功能模块、关系密切程度划分出来,部署到不同的库上。水平切分,当一个表中的数据量过大时,