点云从入门到精通技术详解100篇-基于三维点云的飞机蒙皮表面缺陷检测与表征

本文深入探讨了飞机蒙皮表面缺陷检测技术,从国内外研究现状对比,到具体系统设计与图像处理方法,包括图像对比度校正、多尺度局部对比度检测和自适应边缘检测算法的应用,旨在实现三维点云数据的高效缺陷表征。
摘要由CSDN通过智能技术生成

目录

前言

国内外研究现状

二维缺陷检测研究现状

三维缺陷检测研究现状

2 蒙皮表面缺陷检测系统设计与图像缺陷检测方法研究

2.1 检测系统总体架构设计

2.2 系统测量原理

2.3 基于图像的飞机蒙皮表面缺陷检测方法

2.3.1 图像对比度校正

2.3.2 多尺度的局部对比度显著性检测算法

2.3.3 自适应阈值的边缘检测算法


 

前言

飞机整体包含众多不同类型和功能的构件,每个构件的性能都会一定程度影响到飞
机的运行状态。蒙皮是飞机中一项重要的构件,在飞行过程中承担部分剪力,其状态是影
响飞机安全性及飞机空气动力性能的重要因素,其材料从早期的布过渡到金属及合金材
料,发展到目前阶段主要使用复合材料,例如玻璃纤维、碳纤维及硼纤维等复合材料,且
多数情况下采用蜂窝型夹芯结构复合材料 [1] 。蒙皮在飞机整个服役期内承担着外界不同自
然环境下不断变化的大气压力以及
点云缺陷检测是指通过处理点云数据,识别和检测出点云中存在的异常、损坏或缺陷。在这个过程中,Matlab 是一款广泛应用的分析和处理工具。 首先,点云数据是由大量三维点组成的集合,可以用来表示物体的形状和表面轮廓。这些点往往是由激光扫描仪或摄像机获取的,具有高密度和大容量的特点。 针对点云缺陷检测,Matlab 提供了强大的图像处理和计算功能,可以帮助用户完成以下步骤: 1. 数据加载:使用Matlab的点云库或相关工具,可以将点云数据导入到Matlab中进行后续处理。 2. 数据预处理:对于大规模的点云数据,需要对其进行滤波、降采样和去噪等预处理步骤,以减少数据量、去除噪声和平滑表面。 3. 特征提取:通过计算点云数据的特征,例如曲率、法线方向、点密度等,来描述点云中的局部形状和表面特征。 4. 缺陷检测算法:根据点云数据的特征,结合图像处理和数学模型,开发适合点云缺陷检测的算法。常用的方法包括基于统计学的异常检测算法、基于聚类的缺陷检测算法等。 5. 缺陷可视化和分析:在Matlab中,通过可视化技术,可以将缺陷在点云中进行标记或可视化展示,以便用户观察和分析缺陷的位置、形态等。 综上所述,Matlab在点云缺陷检测中发挥着重要的作用。它提供了丰富的数据处理、算法开发和可视化工具,使得点云缺陷检测更加高效、精确和直观。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值