
大数据竞赛赛题解析
文章平均质量分 92
包含竞赛赛题、赛题解析思路,代码的实现及竞赛的一些规范要求、注意事项等
优惠券已抵扣
余额抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
格图素书
绰约多逸态,轻盈不自持。常矜绝代色,复恃倾城姿。
展开
-
高教社杯数模竞赛特辑论文篇-2018年C题:基于 RFMT 模型的百货商场会员画像描绘(附获奖论文及代码实现)
完善会员画像描绘,加强对现有会员的精细化管理,定期向其推送产品和服务,与会员建立稳定的关系是实体零售行业得以更好发展的有效途径。(4) 建立数学模型计算会员生命周期中非活跃会员的激活率,即从非活跃会员转化为活跃会员的可能性,并从实际销售数据出发,确定激活率和商场促销活动之间的关系模型。(2) 针对会员的消费情况建立能够刻画每一位会员购买力的数学模型,以便能够对每个会员的价值进行识别。(1) 分析该商场会员的消费特征,比较会员与非会员群体的差异,并说明会员群体给商场带来的价值。完善会员画像,加强会。原创 2023-09-01 00:30:00 · 941 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-C题:基于 ARIMA 模型的电商物流调运与优化问题(续)(附MATLAB代码实现)
响,新增物流场地为减轻原线路的货运压力,选择同重要性排名前五的物流场地相距较。问题三在问题二模型的基础上还应添加对关闭线路以及新开线路的约束。为使各线路负荷均衡,引入路线货运量负荷,通过方差衡量负荷的均衡程度。允许进行动态调整,则为动态规划问题,即应综合考虑每天的决策并考虑不同天。的值相对越大,则说明该研究对象距离最劣解越远,则研究对象越好,以综合得。下面比较本问与问题二的不同。3 :站点的输出货物次数,描述工作频率,在物流场地的输出次数多则。关系,若出现未正常流转结果,应分析其未正常流转的货量与负荷。原创 2025-05-28 00:30:00 · 44 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-C题:基于 ARIMA 模型的电商物流调运与优化问题
化,具有周期波动性与总体稳定性,在 2022 年有四次较大波动,考虑季节性因素影响。当突遇疫情、地震等事件时,将会导致物流场地临时或永久停用,其处理的包裹将会被。紧急分流到其他物流场地,以上这些因素均会影响我们各条线路运输包裹的数量,以及。化的线路尽可能少,同时我们要保证各线路的工作负荷尽可能均衡。流转,我们要对此场地关停所导致的货量发生变化的线路数及网络负荷情况进行分析;流场地,假设新开线路的运输能力的上限为已有线路运输能力的最大值。动态调整货物量数学模型,在此问题上我们要考虑到时间对模型的动态调整。原创 2025-05-27 00:30:00 · 44 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-B题:基于 NSGA-Ⅱ的列车时刻表优化(续)(附python代码实现)
题目已经给定的可以作为起点/终点的站点如图 8(深色表示可以作为起点/终点,浅色表示未被选为起点/终点):列车开行数量和列车发车频率都受列车最大满载率的直接影响,从而对企业运营水平和服务水平造成影响。通过分析不同满载率下的列车开行方案,可以得到满载率与企业运营水平和服务水平之间的关系。在问题一中,我们已经研究了最大满载率为 100%的情况,现将最大满载率分别取 90%、95%、105%、110%、115%、120%的进行分析,灵敏度分级结果见表 9。原创 2025-05-26 00:30:00 · 43 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-B题:基于 NSGA-Ⅱ的列车时刻表优化
其他区间只有大交路列车,因此我们将 30 个站点分为小交路区间和其他区间进行讨论。次,对以上 4 个影响因素进行灵敏度分析,得到其与企业运营水平和服务水平的量化关。标规划模型,可用非支配遗传算法(NSGA)进行求解。结合实际要求,从停站时间、追踪间隔、客流需求等多方面出发,得到模型的约束条件。首先,将运行线路分为小交路区间和其他区间,对不同区间进行分类讨论,得到两个区间的企业运营成本和服务水平函数,从而得到整个线路的目标函数。同时,我们结合实际情况,对问题一给出的模型进行改进,讨论了不同的列车编组。原创 2025-05-24 00:30:00 · 49 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-A题:量子计算机在信用评分卡组合优化中的应用(续)(附python代码实现)
最优解的问题,它通过接受劣解的策略在保证全局最优解的概率,因此能求解出较为优。秀的解,但收敛速度比较缓慢。为进一步展示三种求解思路的效果,绘制如图所示的迭。同样进一步分析问题本质以及了解三种求解思路的优化效果,收集三种求解过程中。产生新解的规则为:在当前解的附近随机产生一个新解,计算新解的目标函数值,同样进一步分析问题本质以及了解三种求解思路的优化效果,收集三种求解过程中。模型,以减少变量和约束的数量。工具求解的效果也比较好,收敛速度相较于模拟退火算法更快,可以用于求解许多实际问题,但在处理大规模问题时,原创 2025-05-25 00:30:00 · 22 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-A题:量子计算机在信用评分卡组合优化中的应用
具体来说,通过率越高,通过贷款资格审核的客户数量越多,银行贷款利息收入就越多;的哈密顿算符,引入惩罚标量,得出对应的惩罚函数,将其加入到原目标函数中,转化。信用评分卡可设置不同的阈值,伴随每个阈值可对应不同的通过。策略要确定多个阈值,由此会拥有多种通过率和坏帐率的排列组合,需要选择最优的阈。反的,通过率越低,坏账率也越低。但高通过率一般对应高坏帐率,意味着坏账风险越大,坏帐损失也越大。值,每种阈值下均提供对应的通过率和坏账率。控制工具,用于评估信用风险,不同的信用评分卡之间存在着一定的差异,如何选择最。原创 2025-05-23 00:30:00 · 27 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-D题:基于 ARIMA-SVM 和 Holt-Winters 的新零售精准销量模型(续)
短期内的销量,从而能够很好的指导营销和生产,为大数据时代下新零售的发展作出贡献。最后对预测结果进行之前使序列稳定的操作的逆操作(取指数,差分的逆操作),就可以得到原始数据的。也存在一定的问题,例如没有对不同节假日对销量的影响做进一步区分,如国庆之类的传统节日和双十一。建立起来的,因此时间序列的平稳性是建模的重要前提。占有率六个因素对销量的影响,其中,价格波动率我们定义为一年内产品的实际价格方差。营销日里的销量冲击,对于企业合理高效的进行仓库物品的调配,追求资源最大化、利益最大化作出了。原创 2025-05-14 00:30:00 · 57 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-D题:基于 ARIMA-SVM 和 Holt-Winters 的新零售精准销量模型
的周期性与季节性,对于国庆、双十一等节假日的敏感度较高,我们以天为基本都单位,对目标小类下的。个节假日的促销力度以及其经济大环境等的区别,我们首先单独分析四个节假日的数据,得到每个节假。的数据计算了各指标在所有节假日中的综合权重值。在如今的需求推动下,新零售企业的生产模式逐步向多品种、小批量迈进,这让商场内零售店铺里的。问题三:为了满足企业更加精准的营销需求,试着建立相关数学模型,在考虑小类预测结果的同时,问题四:请给企业写一份推荐信,向企业推荐你的预测结果和方法,并说明你们的方案的合理性以。原创 2025-05-11 00:30:00 · 66 阅读 · 0 评论 -
第十四届MathorCup高校数学建模挑战赛-B题:基于深度学习的甲骨文原始拓片单字自动分割与识别研究(续)
划分好的不同比例的数据集上训练,并且通过不断调整超参数来优化训练效果,具体的。与输入甲骨文图像大小之间的关系,我们尝试增加网络的复杂度同时降低网络输入图像。目标,由于其尺寸较小,预测的检测框可能与真实框之间的重叠区域相对较小,这可能。过大,导致训练模型过拟合,所以在验证集上的精度表现不高,对此我们进一步划分数。的特征表征,更意味着提高准确率,不一定需要堆叠更深的层或者增加神经元个数等,因此针对第四问,我们在给定的原始训练集基础上进行了数据扩充,加入了。模型时,需要确保输入图像具有一致的尺寸。原创 2025-05-13 00:30:00 · 61 阅读 · 0 评论 -
第十四届MathorCup高校数学建模挑战赛-B题:基于深度学习的甲骨文原始拓片单字自动分割与识别研究
型,实现对不同的甲骨文原始拓片图像进行自动单字分割,并从不同维度进行模型评估。到甲骨字符并提取独立的文字区域,这是字形破译的前提。和计算机视觉技术,在甲骨文原始拓片图像的复杂背景中提取出特征鲜明且互不交叠的。征的特殊考量,通用的代表性图像分割方法目前尚不能对甲骨文原始拓片图像中的文字。提取图像特征,建立甲骨文图像预处理模型,实现对甲骨文图像干扰元素的初步判别和。的差异,图像的亮度和对比度可能不均匀,需进行调整以便更好地突出文字信息。这一任务本质上属于图像分割的范畴,但与传统的图像分割任。原创 2025-05-10 00:30:00 · 81 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-A题: QUBO 模型的信用评分卡组合优化(续)(附MATLAB代码实现)
略的收益和通过率计算得到,表达式变得简洁。对于三重信用卡组合策略的收益,即式。个数更多,在化简过程中首先处理带来负收益的阈值,并且对三次交叉项使用对数法分。于是,三重信用卡组合策略的收益可直接由三个单信用卡评分策略的收益和通过率。问题三的建模与求仍然解遵循计算收益,化简收益表达式,构建优化模型,转化为。的等价变换后,双信用卡组合策略的收益可直接由两个单信用卡评分策。求解几个主要步骤进行。相比问题一和二,问题三的优化变量。求解器对该模型进行求解。中的约束条件,设惩罚函数。原创 2025-05-12 00:30:00 · 59 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-A题: QUBO 模型的信用评分卡组合优化
粒子群优化算法 (PSO : Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解,原创 2025-05-09 00:30:00 · 39 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-D题:对新零售目标产品精准需求的预测模型(续)(附MATLAB代码实现)
和问题二类似,问题三我们需要建立相关数学模型,并预测目标小类在2019年10月1日后12周每周的周销量。但是问题三与问题二不同的地方在于,问题三属于大样本分析,且数据庞大,所以我们采取建立基于双隐含层得BP神经网络预测模型的方法来对所需数据进行预测。基于双隐含层的 BP 神经网络预测模型相对灰色预测模型的优越性:灰色模型适合对小样本数据进行预测,而基于双隐含层的BP神经网络预测模型适用于大数据预测,且基于双隐含层的BP神经网络预测模型可以通过一定数据的训练,原创 2025-05-02 00:30:00 · 59 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-D题:对新零售目标产品精准需求的预测模型
筛选出目标 skc,其次分别筛选出四个节假日中目标 skc 的销售量 S,同时结合 4 个节。性回归方程,找出 S 与 4 个因素直接的关系,最后运用层次分析法,求出 4 个因素对。针对问题三,预测目标小类的指定周销量以及相应的 MAPE。基于对所给数据的分析与筛选,本文认为节假日中共有 4 种因素对目标 skc 的销售量。针对问题一,要求分析不同节假日内各种相关因素对目标 skc 的销售量的影响。编程求解,得出各个因素对目标产品销售量影响的程度,且预测出了目标产品的月销量以及。性化,美观,时尚”等方面。原创 2025-05-01 00:30:00 · 43 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-C题:基于蚁群算法的仓内拣货作业调度优化分析(续)(附MATLAB代码实现)
本题可正常使用复核台个数为4个,任务单数量为49份,拣货人员为9人,初始复核台位置、终点复核台位置均未知。影响出库时间大小的因素主要有拣货员单个任务单理想路线长度、拣货人员在复核台的人数分配、以及拣货人员手中的任务单数量分配,在本题中,影响较大的是拣货人员在复核台的人数分配、以及拣货人员手中的任务单数量分配。由于本题多达49个任务单,数量很大,而复核台也多达4个,拣货人员更是多达9个之多,且初始、结束复核台均不知,因此实际算出精确值的算法路线是交错复杂的,而且也不必要。原创 2025-04-30 00:30:00 · 45 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-C题:基于蚁群算法的仓内拣货作业调度优化分析
本题仓库有 13 个复核台,4 排货架,其中每排 25 组货架,每组 2 个货架,共 50 个。49 个任务单,数量很大,而复核台也多达 4 个,拣货人员更是多达 9 个之多,且初始、复核台长短以及实际位置情况,我们把货架划分为四个区域:A 区,B 区,C 区,D 区。拓展为 5 个,起始位置为复核台𝐹𝐻03,单人拣货,但仍是典型的动态路径优化问题。级改良的蚁群遗传算法,对仓库拣货路径进行最大程度的迭代优化,通过多重智能优化,题得到的简化模型的分析,通过调整每个拣货人员负责的任务单数和复核台的拣货人数,原创 2025-04-28 00:30:00 · 60 阅读 · 0 评论 -
“华为杯”第十四届中国研究生 数学建模竞赛-F题:构建地下物流系统网络(续)(附lingo代码实现)
①层次分析法层次分析法以下简称AHP法早在21世纪70年代中期由美国运筹学家托马斯·塞蒂就正式提出。该方法的思路是:将一个多目标的决策问题看作是一个系统,并将目标的问题分解,使其转化为多个准则,并把它分解为多个指标的各个层次,通过对定性指标的大致量化,计算出不同层次的权重,用来为多方案的优化与决策。AHP法不仅存在不定性主观信息的情况下适用,还允许通过符合逻辑的方式,但它的评价结果很大程度上由人的主观意志决定,具有较强的主观性。②熵权评价法ULS。原创 2025-04-24 00:30:00 · 65 阅读 · 0 评论 -
“华为杯”第十四届中国研究生 数学建模竞赛-F题:构建地下物流系统网络
总成本最低的优化问题转化为区域外、区域间和区域外纯路径优化问题,采用混。折旧成本对通道距离的灵敏度,发现路径是影响总成本的关键因素,从而将总成。本最低问题转换为最短路径优化的最小生成树问题,并搭建了整数规划模型,并。网不相邻节点的直线转运,缩短货物运输总里程,且中继网络还可在最极端环境。生成树的最下游节点和一级节点间建立通路,保证各节点与一级节点间至少有一。优化节点选址和地下通道网络,还能提高物流运输效率,对解决城市交通拥堵、地区的交通货运特征,完成该区域地下物流系统的物流节点选址和线路规划,以。原创 2025-04-23 00:30:00 · 103 阅读 · 0 评论 -
“华为杯”第十四届中国研究生 数学建模竞赛-B:面向下一代光通信的 VCSEL 激光器仿真模型(续)(附MATLAB代码实现)
流中的有效部分,在该模型中,由于电流分布不均、界面损耗等因素,激光器内。体参数,但是维持了模型整体的精确性,并且节省了计算量,可能很快推导出其。对于第五部分中所采用的模型,实际上是不完善的,由于各参数之间关联性。改进模型中,在模型求解的第二部分,完全不再需要使用多个误差约束条件。可见改进模型准确性非常高,而在模型计算的工作量上,改进模型体现出了。相较原模型,改进模型的劣势在于无法获得大部分参数的具体值,但由于原。情况,另一方面,该模型所采用的速率方程中,也有一些不自洽的地方。原创 2025-04-19 00:30:00 · 71 阅读 · 0 评论 -
“华为杯”第十四届中国研究生 数学建模竞赛-B:面向下一代光通信的 VCSEL 激光器仿真模型
摘 要:激光器是现代光通信中的关键器件之一,激光器的性能极大地影响了光通信系统的整体性能。VCSEL 激光器有潜力成为符合下一代光通信要求的关键器件。本文围绕着 VCSEL 激光器的多种性能,通过建立数学模型,修正数学模型,采取多种算法对典型实验数据进行拟合,得到了更广泛条件下 VCSEL 激光器的工作性能和关键参数。本文的工作包括但不限于建立了 VCSEL 激光器工作电流与输出光功率强度关系模型(L-I 模型),分析了输出光功率对于温度的依赖性;在分析。原创 2025-04-18 09:09:34 · 80 阅读 · 0 评论 -
第十二届MathorCup高校数学建模挑战赛-A题:大规模指纹图像检索的模型与实现(续)
向量,在数据库中的子集中进行初筛选,分别计算与检索图像最近的几个子集,对于提取较少数量的数据,我们可以在第一次提取的基础上增加了数据的比对,行大量样本的筛除,之后利用精确度较高的算法进行继续筛选,直至达到要求。剩下的小规模子集中,进行两两比对筛选,计算含有“同一”指纹匹配对子的。同时,对于比对的步骤,我们。我们认为的原因是神经网络的规模不够大无法提取更多的细节特征,而引入大。分由于部分的特征值点的缺失导致,导致该利用最邻近三角形的特征值识别过。因此我们使用的时基于距离的方法,一方面该方法简单,对内存。原创 2025-04-17 00:30:00 · 90 阅读 · 0 评论 -
第十二届MathorCup高校数学建模挑战赛-A题:大规模指纹图像检索的模型与实现
统计每个子空间内的特征点坐标,用来计算该子空间下的特征,并将所有子空间的坐。据库中不同的子类中心坐标进行比对,确定距离最小的几个子类作为该查询指纹在数。选出一定的指纹,并对筛选出的指纹一一对比,确定相似程度最高的部分指纹作为筛。生物识别领域中,指纹识别被广泛应用,指纹筛选和识别的问题受到广泛关注。实 际应用价值,必须引入图像检索技术,缩短数据库的每次遍历时间。提取环节会提取用于指纹识别的指纹特征,一般国际上最为常见的指纹特征为。现象,最终导致某些原本应该提取到的特征没有提取到,或者提取了一定数量。原创 2025-04-16 00:30:00 · 207 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-D题:航空安全风险分析和飞行技术评估问题
实时传输,如果你是该航空公司的安全管理人员,请建立航空公司实时自动化预警机制,有时是特定的天气容易出现特定的超限,有时是特定的飞行员容易出现特定的超限。聚类算法,通过数据之间的内在关系把样本划分为若干类别,使得同类别样本之间的相。似度高,不同类别之间的样本相似度低。于原先提出的所有变量,将重复的变量关系紧密的变量删去多余,建立尽可能少的新变。针对问题二,首先确定量化的对象,用杆量和盘量的变化来反映“重着陆”等现象;组数据的测量尺度相差太大,或者数据量纲的不同,直接来进行比较不合适,此时就应。原创 2025-04-13 00:30:00 · 101 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-D题:航空安全风险分析和飞行技术评估问题(续)(附python代码实现)
由图可知,“50英尺至接地距离远”“爬升速度大35-1000ft”“接地速度小”三种超限情况分别占总数的83.51%84.65。其中“50英尺至接地距离远”占比最大,分别为39.96%36.02%;在目的机场为机场68时,“爬升速度大36-1000ft”占比为26.36%大于起飞机场与总体占比。如图4,不论起飞机场或者目的机场,在机场68时,“着陆”“空中”“进近”飞行阶段下出现超限情况较多,分别占总数的98.27%97.72%。而在“50。原创 2025-04-14 00:30:00 · 54 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-A题:基于 QUBO 模型的信用评分卡组合优化
例如,在金融投资领域中,确定投资组合相当于等式约束下的二次规划。型是解决该类问题的常见方法,该模型能够运行在量子计算机硬件上,通过量子计算机。进行毫秒级的加速求解,能够大幅缩短模拟和优化的时间,并有效提高模型准确性,在。优化算法的核心是绝热量子计算,而量子退火则是实现绝热量子计算的物理过程。上,量子退火过程尚难满足绝热量子计算所需条件,因此量子退火是绝热计算的一种近。目前,关于量子计算应用于投资组合问题中的研究相对不多。综上,已有相关学者将量子计算应用于优化领域,但具体落脚在金融投资领域的研。原创 2025-04-11 00:30:00 · 97 阅读 · 0 评论 -
第十三届MathorCup高校数学建模挑战赛-A题:基于 QUBO 模型的信用评分卡组合优化(续)(附python代码实现)
针对问题三,贪心算法思路是:对于每组信用评分卡的组合,先遍历所有阈值组合,记录下可以获得最小总坏账率的那个阈值组合。然后,再在最优信用评分卡阈值组合下计算总通过率、总坏账率和最终收入。这种方法虽然仍需要枚举所有可能性,但只需要枚举每组卡的组合一次,而不是再对每组卡的组合进行一次循环,这使得时间复杂度从针对问题三,通过遗传算法求解时步骤大致如下:①确定染色体编码方式:使用一个长度为333张卡片,每张卡片有10种等级)的二进制串作为染色体编码。例如,表示选择第275853。原创 2025-04-12 00:30:00 · 80 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-D题:对新零售目标产品精准需求的预测模型(续)(附MATLAB代码实现)
基于双隐含层的BP神经网络预测模型相对灰色预测模型的优越性:灰色模型适合对小样本数据进行预测,而基于双隐含层的BP神经网络预测模型适用于大数据预测,且基于双隐含层的BP神经网络预测模型可以通过一定数据的训练,能够通过学习自动寻找出输入,输出数据间的合理规则。并自适应的将学习内容记忆于网络的权值中,即基于双隐含层的BP神经网络具有高度自学习和自适应的能力。建立含有双隐含层的BP神经网络模型,并导入目标小类历史每周销量数据,根据所给样本数据,我们一共提取出了104。原创 2025-04-07 00:30:00 · 106 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-D题:对新零售目标产品精准需求的预测模型
信息(表 1),使用 MATLAB 对数据进行多元线性回归,得到残差图 (图 1)并给出具。性回归方程,找出 S 与 4 个因素直接的关系,最后运用层次分析法,求出 4 个因素对。基于对所给数据的分析与筛选,本文认为节假日中共有 4 种因素对目标 skc 的销售量。针对问题一,要求分析不同节假日内各种相关因素对目标 skc 的销售量的影响。通过 EXCEL 对所给数据进行筛选,得到双十一各因素的实验数据(见表 4),使用。通过 EXCEL 对所给数据进行筛选,得到双十二各因素的实验数据(见表 7),使用。原创 2025-04-05 00:30:00 · 119 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-A题:无车承运人平台线路定价问题
路价格,得出评价结果,将线路价格分为 3 个等级,1 级最好,2 级较好,3 级最差。终,线路价格中评价较好及以上的结果占比 97.81%,超过 95%,故可知线路成交价定价。用问题 2 的秩和比模型进行评价,发现模型报价结果中评价较好及以上的结果占比为。评价需要各指标的权重,权重不可随意决定,故可采用层次分析法,得出各指标的权重。关指标,根据平台现有定价建立平台线路定价预测与评价模型,最后结合数据分析及建。针对问题二,根据问题一得出的 8 项指标,建立层次分析模型获取其权重,再将指。原创 2025-04-01 09:32:51 · 499 阅读 · 0 评论 -
第十四届MathorCup高校数学建模挑战赛-C题:基于 LSTM-ARIMA 和整数规划的货量预测与人员排班模型(续)
10] 金天坤,高扬.遗传算法的原理及组成浅析[J].科技视界,2014(04):19-20.[12] 李智勇,孙小英. ARIMA 模型在批发和零售贸易餐饮业预测中的应用[J].襄樊职。[1] 张帆,淳田,肖锋.基于 Flexsim 的快件分拣中心优化与仿真研究[J].物流技。[8] 马家丽,胡雪梅.半参数可加测量误差模型的白噪声检验[J].系统科学与数学,20。[11] 卢子甲,韩义民,张少卿.基于遗传算法的配送中心拣选路径优化案例研究[J].稳,则对其进行差分运算,直至数据达到平稳后再进行下一步。原创 2025-04-03 00:30:00 · 97 阅读 · 0 评论 -
第十四届MathorCup高校数学建模挑战赛-C题:基于 LSTM-ARIMA 和整数规划的货量预测与人员排班模型
我们将处理前后的日货量变化情况进行对比,发现处理后的数据变化幅度明显减小。量、运输线路情况等,同时考虑其他可能影响货量的因素,如节假日、促销活动等,到时货量,将各个分拣中心的时货量变化情况进行可视化处理,如图 5.3 所示。力有着至关重要的作用。效率,又要降低成本,并确保分拣中心的正常、高效运转。在保证每日货量处理完成的前提下,尽量减少安排的人天数,并且保持每天的实际。中加入考虑运输线路变化对货量预测的影响,调整模型参数以适应新的线路情况。对于某条线路货量的变化,调整相关分拣中心的货量以反映这一变化。原创 2025-03-28 08:42:25 · 388 阅读 · 0 评论 -
第十一届MathorCup高校数学建模挑战赛-A题:自动驾驶中的车辆调头问题研究(续)(附MATLAB和lingo代码实现)
此外,此种情况还有其它两种可能,从第三车道调头成功,如图。车开始直行,此直行过程匀加速运动的时间为。车道调头成功,如图 6-8 所示。所示仿真结果如图 6-6 所示。第二种情况的调头示意如图。当道路上存在其它静止障碍物。中,我们已经知道线段。原创 2025-03-23 00:30:00 · 129 阅读 · 0 评论 -
第十一届MathorCup高校数学建模挑战赛-A题:自动驾驶中的车辆调头问题研究
最后,我们对无人车的调头总过程分三种情况分别讨论,建立目标规划模型,先考虑没有障碍物,只有人行道的情况,无人车从初始位置到后轮越过斑马线开始调头,道的情况,首先,根据无人车从不同位置开始调头,主要讨论了问题一的前两种情况;们分析无人车与障碍物的相对位置,建立无人车调头轨迹规划模型,得出了无人车调头。存在时,建立相应的无人车调头的数学模型,给出合理的算法设计,并给出调头轨迹,人车调头的数学模型,给出合理的算法设计和相应的调头轨迹;态,如对向来车等,假设图中标识的障碍物位置为无人车处在起始时刻的初始位置,障。原创 2025-03-20 00:30:00 · 959 阅读 · 0 评论 -
第十四届MathorCup高校数学建模挑战赛-A题:基于主从空间分解与关联的移动通信网络 PCI 规划
题的复杂性,并为子问题引入更有针对性的算法,通常可以有效地解决原始问题。由于实际网络中小区数量巨大,解空间增加,在合理的时间内生成有效的。从伴随优化算法来实现两类区域的关联优化,主要区域实现自身的全局优化,次要区域。然后,在主从伴随优化算法的基础上,引入禁忌表,用于记录已经。搜索过的解,避免在搜索过程中重复访问相同的解,从而加速算法的收敛速度,提高算。与资源驱动模型相比,任务驱动模型主要关注任务需求,决定执行任务的资源,常见的。然而,这种类型的模型可能会扩展求解空间,导致大量的不可行解,并且求解难。原创 2025-03-10 00:30:00 · 95 阅读 · 0 评论 -
第十四届MathorCup高校数学建模挑战赛-A题:基于主从空间分解与关联的移动通信网络 PCI 规划(续)
图 15 为特定区域不同种类的冲突度,可以看到,不同区域之间的冲突度显著不同,基础上,引入禁忌表,用于记录已经搜索过的解,避免在搜索过程中重复访问相同的解,因为在对角线周边的区域是相邻的,因此,根据这一发现,后在算法设计方面,在主从伴随优化算法的基础上,引入禁忌表,记录已经搜索过的解,避免在搜索过程中重复访问相同的解,从而加速算法的收敛速度,提高算法的优化效率。据不同区域的冲突、混淆和干扰指标计算该区域的冲突度后,通过该三类冲突对区域进。有的区域具有较大的冲突,而有的区域具有较小的冲突。原创 2025-03-13 00:30:00 · 94 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-B题:人口老龄化背景下社会养老服务的需求分布预测与经营制度研究(续)(附MATLAB代码实现)
对三类养老服务床位分。政府机构养老服务床位数量以及民间机构养老服务床位数量的权重。对于养老服务床位数量的需求量不是很大,针对以上情况,未来可对西北地区的养老服。目前社会养老服务床位的社会需求,可将消费需求分为四个等级:分别为高端自理型,中低端自理型,高端介护型,中低端介护型。服务,根据自身需求以及消费意愿,选择服务类型,以满足高端老年人群对于服务水平。预测图像呈增长趋势,可说明养老服务产业消费群体增长,政府补贴和社会捐赠增长。养老服务床位结构性短缺的问题,满足各个阶层的消费能力以及消费需求,真正实现经。原创 2025-03-01 00:30:00 · 120 阅读 · 0 评论 -
第十届MathorCup高校数学建模挑战赛-B题:人口老龄化背景下社会养老服务的需求分布预测与经营制度研究
养老,其实就是‘一碗米,一杯水,一口气,一扇窗,一扇门,一张床’。上,通过宏观协调发展养老服务事业,形成促进社会就业的养老服务床位运营商业模式。的老年人口对于三类养老服务床位需求量的影响因素分为老年人口对费用,住宿,服务,之间的相互关联,相互影响的隶属关系,建立层次,从而得到多个层次的结构分析模型,和乡村老年人口重要性进行主观判定,在此基础上对费用,住宿,服务,卫生,娱乐进行。家养老,社区养老以及机构养老。确定养老服务床位结构。城镇和乡村的老年人口对于三类养老服务床位需求量的影响因素分为老年人口对费用,原创 2025-02-28 00:30:00 · 99 阅读 · 0 评论 -
“华为杯“第十四届中国研究生数学建模竞赛-E题:多波次导弹发射中的规划问题(续)(附MATLAB代码实现)
将最长暴露时间的发射装置按照“优先隐蔽于转载地”,即增加该种发射装置的隐蔽时长,从而达到缩短最长暴露时间的目的。8.2 模型建立。原创 2025-03-02 00:30:00 · 106 阅读 · 0 评论 -
“华为杯“第十四届中国研究生数学建模竞赛-E题:多波次导弹发射中的规划问题
点 J04、J06、J08、J13、J14、J15 附近隐蔽待机(坐标就取相应节点的坐标),2)除已布设的 6 个转载地域外,可选择在道路节点 J25、J34、J36、J42、J49。得到第二波的发射点位 F2 和第一波发射点位 F1 到第二波发射点位 F2 的路径。得到第二波的发射点位 F2 和第一波发射点位 F1 到第二波发射点位 F2 的路径。置,距 D 较近的发射点位分配给速度较慢的 B 型和 C 型发射装置。首先根据题目给出的每个点的(x,y)坐标和 A、B、C 三种类型发射装置的行。原创 2025-02-27 00:30:00 · 111 阅读 · 0 评论