图像工程的读书笔记 数学形态学

图像工程的读书笔记 数学形态学

形态学一般是指生物学中研究动物和植物结构的一个分支。形态学因子/要素指不包括单位的数或者是特性。
近年来,有人用数学形态学为工具进行图像分析。它的基本思想是用一定形态的结构元素去量度和提取图像中
的特定的形状,以达到对图像的分析和识别的目的。数学形态学的数学基础和所用的语言是集合论。
数学形态学的应用可以简化图像数据,保持它们的基本的形状特征,并除去不想干的结构 。数学形态学的算法
具有天然的并行实现的结构。

数学形态学的基本运算有膨胀和腐蚀,开启和闭合,击中-击不中变换。
基本操作的运算性质如下表:

组合运算有区域凸包,细化,粗化,剪切。

数学形态学的操作对象是二值图像时,称为二值数学形态学。
二值数学形态学的实用算法,包括噪声滤除,目标检测,边界提取,区域填充,连通组元提取
和区域骨架提取等。

灰度数学形态学对灰度图像,采用数学形态学的方法进行分析的学问。
灰度数学形态学与二值数学形态学有类似的数学运算。例如膨胀和腐蚀,开启和闭合,击中-击不中变换

膨胀灰度图像的结果是,比背景亮的部分得到了扩张,而比背景暗的部分受到收缩。
腐蚀灰度图像的结果是,比背景亮的部分得到了收缩,而比背景暗的部分受到扩张。
形态学梯度能加强图像中比较尖锐的灰度过渡区。
形态学平滑效果是去除或减弱亮区和暗区的各类噪声。
高帽变换对增强图像中阴影的细节很有用(它同时消除了亮区的细节)
开启操作可以消除图像中的孤岛或尖峰等过亮的点。
闭合操作可以对背景暗且尺寸比较小的结构除掉。
形态滤波器可以消除噪声。

 

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页