定义法证明可带入非边界点函数极限

前言

感谢胡老带我复习微积分,感觉我真的是什么都不会,每天除了吹牛之外什么都做不好,吹完牛之后还总是拉跨。

基本思路

个人感觉这种问题通常矩形邻域比原型邻域的处理方式更简单一些,考虑将 ∣ f ( x , y ) − M ∣ |f(x,y)-M| f(x,y)M 放大得到关于 δ \delta δ 的简单表达式 h ( δ ) h(\delta) h(δ),最后令 h ( δ ) < ε h(\delta)<\varepsilon h(δ)<ε 解得 δ \delta δ 关于 ε \varepsilon ε 的表达式即可。

例题 1

用定义证明:

lim ⁡ ( x , y ) → ( 1 , 1 ) x 2 + y 2 x + y = 1 \lim_{(x,y)\to(1,1)}\frac{x^2+y^2}{x+y}=1 (x,y)(1,1)limx+yx2+y2=1

思维过程

( 1 , 1 ) (1,1) (1,1) 是一个非边界可带入点,本质上是在证明二元函数在该点处连续,不过这和我们研究的问题无关。为了表述方便,我们要进行如下换元【步骤一:换元】:

{ X = x − 1 Y = y − 1 \left\{ \begin{aligned} X &=x-1\\ Y &=y-1 \end{aligned} \right. {XY=x1=y1

带入原式得到 :

x 2 + y 2 x + y = ( X + 1 ) 2 + ( Y + 1 ) 2 ( X + 1 ) + ( Y + 1 ) = X 2 + 2 X + Y 2 + 2 Y + 2 X + Y + 2 \frac{x^2+y^2}{x+y}=\frac{(X+1)^2+(Y+1)^2}{(X+1)+(Y+1)}=\frac{X^2+2X+Y^2+2Y+2}{X+Y+2} x+yx2+y2=(X+1)+(Y+1)(X+1)2+(Y+1)2=X+Y+2X2+2X+Y2+2Y+2

因此:

∣ x 2 + y 2 x + y − 1 ∣ = ∣ X 2 + X + Y 2 + Y X + Y + 2 ∣ \left|\frac{x^2+y^2}{x+y}-1\right|=\left|\frac{X^2+X+Y^2+Y}{X+Y+2}\right| x+yx2+y21=X+Y+2X2+X+Y2+Y

δ > 0 \delta>0 δ>0 使得 ∣ X ∣ < δ , ∣ Y ∣ < δ |X|<\delta,|Y|<\delta X<δ,Y<δ 观察到分子决定了该表达式最终趋近于零,而分母只是常数。由于 ( X , Y ) → ( 0 , 0 ) (X,Y)\to(0,0) (X,Y)(0,0),不妨令 X > − 1 2 , Y > − 1 2 X>-\frac 1 2,Y>-\frac 1 2 X>21,Y>21 δ ≤ 1 2 \delta \leq \frac 1 2 δ21。此时有【步骤二:限界,使分子缩小为常数】:

X + Y + 2 > 1 X+Y+2>1 X+Y+2>1

因此此时有【步骤三:带入 δ \delta δ】:

∣ X 2 + X + Y 2 + Y X + Y + 2 ∣ < ∣ X 2 + X + Y 2 + Y 1 ∣ < ∣ X 2 ∣ + ∣ X ∣ + ∣ Y ∣ + ∣ Y 2 ∣ < 2 δ 2 + 2 δ < 4 δ = ε \left|\frac{X^2+X+Y^2+Y}{X+Y+2}\right|<\left|\frac{X^2+X+Y^2+Y}{1}\right|<|X^2|+|X|+|Y|+|Y^2|<2\delta^2+2\delta<4\delta=\varepsilon X+Y+2X2+X+Y2+Y<1X2+X+Y2+Y<X2+X+Y+Y2<2δ2+2δ<4δ=ε

(稍微解释一下,因为 0 < δ ≤ 1 2 0<\delta \leq \frac 1 2 0<δ21,所以 δ 2 < δ \delta^2<\delta δ2<δ。)

因此,对任意的 ε > 0 \varepsilon>0 ε>0 δ = min ⁡ { ε 4 , 1 2 } \delta=\min\{\frac{\varepsilon}{4},\frac 1 2\} δ=min{4ε,21} 一定有:

∣ X 2 + X + Y 2 + Y X + Y + 2 ∣ < ε \left|\frac{X^2+X+Y^2+Y}{X+Y+2}\right| < \varepsilon X+Y+2X2+X+Y2+Y<ε

因此得证。

证明过程

任取 ε > 0 \varepsilon >0 ε>0,可以说明,当 δ = min ⁡ { ε 4 , 1 2 } > 0 \delta=\min\{\frac{\varepsilon}{4},\frac 1 2\}>0 δ=min{4ε,21}>0 时,有 ∣ f ( x , y ) − 1 ∣ < ε |f(x,y)-1|<\varepsilon f(x,y)1<ε

∵ δ ≤ 1 2 ∴ x − 1 > − 1 2 , y − 1 > − 1 2 ∴ x + y > 1 \because \delta\leq \frac 1 2 \therefore x-1>-\frac 1 2,y-1>-\frac 1 2 \therefore x+y>1 δ21x1>21,y1>21x+y>1

∵ δ ≤ 1 2 < 1 ∴ δ 2 < δ \because \delta \leq \frac 1 2<1\therefore \delta^2<\delta δ21<1δ2<δ

∣ x 2 + y 2 x + y − 1 ∣ = ∣ ( x − 1 ) 2 + ( y − 1 ) 2 + ( x − 1 ) + ( y − 1 ) x + y ∣ < ∣ ( x − 1 ) 2 + ( y − 1 ) 2 + ( x − 1 ) + ( y − 1 ) ∣ < ( x − 1 ) 2 + ( y − 1 ) 2 + ∣ x − 1 ∣ + ∣ y − 1 ∣ < 2 δ 2 + 2 δ < 4 δ ≤ ε \begin{aligned} \left|\frac{x^2+y^2}{x+y}-1\right| &=\left|\frac{(x-1)^2+(y-1)^2+(x-1)+(y-1)}{x+y}\right|\\ & <\left|(x-1)^2+(y-1)^2+(x-1)+(y-1)\right|\\ &<(x-1)^2+(y-1)^2+|x-1|+|y-1|\\ &< 2\delta^2+2\delta\\ & < 4\delta\\ & \leq \varepsilon \end{aligned} x+yx2+y21=x+y(x1)2+(y1)2+(x1)+(y1)<(x1)2+(y1)2+(x1)+(y1)<(x1)2+(y1)2+x1+y1<2δ2+2δ<4δε

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值