补充——FFT中的二进制翻转问题

版权声明:文章纯属版主手敲,请同学们尊重版主的知识产权。 https://blog.csdn.net/GGN_2015/article/details/69518685

在我之前的FFT博客中好像并没有具体地介绍FFT中的“二进制翻转是如何实现的”,在这里我们简短的讨论一下。


实现方法

如果一位一位翻转,尽管位数不是很多,数据个数非常多的时候还是比较慢。所以,我们用一个类似DP的方法来实现这个功能。

Leo学长的代码中是这样写的:

 void get_rev(int bit)//bit表示二进制的位数
{  
    for(int i=0;i<(1<<bit);i++)//我么要对1~2^bit-1中的所有数做长度为bit的二进制翻转
        rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));//?!! SMG ?!!
}

第一次看的时候感觉“丈二和尚摸不着头脑”。

我们可以把一个二进制数看成两部分,它的前bit-1位是一部分,它的最后一位是一部分。一个数的二进制翻转就相当于是把它的最后一位当成首位,然后在后面接上它前bit-1为的二进制翻转(有图有真相↓)。而且在这个循环中我们能保证,在计算“i”的二进制翻转之前1~i-1中的所有数的二进制翻转都已经完成。“i”的前bit-1位的数值其实就是[i/2](向下取整)的值,也就是i>>1的值,直接调用i>>1的二进制翻转的结果就相当于调用了“i”的前bit-1位二进制翻转的结果。

二进制翻转

其实i>>1的翻转与“i”的前bit-1位的翻转是有一点出入的,因为我们的二进制翻转始终以bit位为标准,所以i>>1会比“i”的前bit-1位多出一个前导零,而翻转之后就会多出一个“后缀零”,所以“i”的前bit-1位的翻转要去掉那个“后缀零”,也就是“rev[i>>1]>>1”。

递推表达式的由来

因此,我们只要把末尾乘上2^(bit-1)变成首位,再加上rev[i>>1]>>1就是我们要的答案了。文中的代码采用了“按位或”“|”而非加法,其实也是成立的。因为(i&1)^(bit-1)的后bit-1位都是零,0|1=1 0|0=0,0+1=1 0+0=0。此时“按位或”与加法等价,而且“按位或”比一般的加法要快,所以可以把这看成是一种加快运算速度的的方法,也就是所谓的常数优化(其实没有什么大用)。(FZW大神教育我们:常数优化改变人生~。)

rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));

后记

看完这些就可以继续回去看“FFT”的相关内容了。考虑到有的同学可能对“位运算”不是很了解,我想抽时间写一篇关于位运算的文章,敬请期待。

读者返回链接:真正的FFT详解

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页