语义网(Semantic Web)

语义网

维基百科,自由的百科全书

跳转到: 导航, 搜索

跳过字词转换说明

 

File:Sw-horz-w3c.png
W3C的语义网徽标

语义网(Semantic Web) 是一个由万维网联盟蒂姆·伯纳斯-李(Tim Berners-Lee)在1998年提出的一个概念,它的内核是:通过给万维网上的文档(如:HTML)添加能够被计算机所理解的语义(Meta data),从而使整个互联网成为一个通用的信息交换媒介。语义万维网通过使用标准、置标语言和相关的处理工具来扩展万维网的能力。不过语义网概念实际上是基于很多现有技术的(某些技术甚至可以追溯到20世纪60年代末期), 也依赖于后来和text-and-markup知识表现的综合.

"语义"网是由比现今成熟的网际搜索工具更加行之有效的、更加广泛意义的并且自动聚集和搜集信息的文档组成的。 其最基本的元素就是语义链接

通过下列方法可以提升万维网以及其互连的资源的可用性(usability)和有效性(usefulness):

  • "标记"了语义信息的文档。这可以是机器可以理解的关于文档内容(例如文档的作者,标题,简介等)的描述, 或者是描述该网站所拥有的服务和资源.(注意:任何东西都是能被URI-统一资源定位符-所描述的,因此语义网能理解人物、地方、想法、类等等)
  • 通用元数据词汇表(本体论)及词汇间的影射使得文档作者知道如何来标记文档方可让机器识别他想提供的元数据.
  • 利用元数据为语义网用户执行任务的自动软件代理(agent).
  • 为自动软件代理提供特定信息的网络服务 (例如, 可信度服务可以让软件代理查询某个在线商店是否曾经有过不良纪录或者发送过垃圾邮件).

这方面的技术依靠下列的工具: URIs (以识别任何资源定位) 及 XML名字空间. 这些技术,加点逻辑,能组成RDF,一种用于描述任何事物的标记语言. 和RDF类似, 很多其他技术, 例如 概念图 和 Web之前的人工智能 技术,例如知识库描述逻辑, 都有可能对语义网有贡献.

目前的各种万维网技术都有可能被应用于语义网 (在语义环球网的意义上), 例如 :

[编辑] 参见

*W3C *OWL *Cyc

[编辑] 外部链接

reword ................................................................... xi Preface .................................................................... xiii Part I. Semantic Data 1.Why Semantics? ........................................................ 3 Data Integration Across the Web 4 Traditional Data-Modeling Methods 5 Tabular Data 6 Relational Data 7 Evolving and Refactoring Schemas 9 Very Complicated Schemas 11 Getting It Right the First Time 12 Semantic Relationships 14 Metadata Is Data 16 Building for the Unexpected 16 “Perpetual Beta” 17 2.Expressing Meaning .................................................... 19 An Example: Movie Data 21 Building a Simple Triplestore 23 Indexes 23 The add and remove Methods 24 Querying 25 Merging Graphs 26 Adding and Querying Movie Data 28 Other Examples 29 Places 29 Celebrities 31 Business 33 v Download at Boykma.Com 3.Using Semantic Data ................................................... 37 A Simple Query Language 37 Variable Binding 38 Implementing a Query Language 40 Feed-Forward Inference 43 Inferring New Triples 43 Geocoding 45 Chains of Rules 47 A Word About “Artificial Intelligence” 50 Searching for Connections 50 Six Degrees of Kevin Bacon 51 Shared Keys and Overlapping Graphs 53 Example: Joining the Business and Places Graphs 53 Querying the Joined Graph 54 Basic Graph Visualization 55 Graphviz 55 Displaying Sets of Triples 56 Displaying Query Results 57 Semantic Data Is Flexible 59 Part II. Standards and Sources 4.Just Enough RDF ....................................................... 63 What Is RDF? 63 The RDF Data Model 64 URIs As Strong Keys 64 Resources 65 Blank Nodes 66 Literal Values 68 RDF Serialization Formats 68 A Graph of Friends 69 N-Triples 70 N3 72 RDF/XML 73 RDFa 76 Introducing RDFLib 80 Persistence with RDFLib 83 SPARQL 84 SELECT Query Form 86 OPTIONAL and FILTER Constraints 87 Multiple Graph Patterns 89 CONSTRUCT Query Form 91 vi|Table of Contents Download at Boykma.Com ASK and DESCRIBE Query Forms 91 SPARQL Queries in RDFLib 92 Useful Query Modifiers 94 5.Sources of Semantic Data ............................................... 97 Friend of a Friend (FOAF) 97 Graph Analysis of a Social Network 101 Linked Data 105 The Cloud of Data 106 Are You Your FOAF file? 107 Consuming Linked Data 110 Freebase 116 An Identity Database 117 RDF Interface 118 Freebase Schema 119 MQL Interface 121 Using the metaweb.py Library 123 Interacting with Humans 125 6.What Do You Mean, “Ontology”? ........................................ 127 What Is It Good For? 127 A Contract for Meaning 128 Models Are Data 128 An Introduction to Data Modeling 129 Classes and Properties 129 Modeling Films 132 Reifying Relationships 134 Just Enough OWL 135 Using Protégé 140 Creating a New Ontology 140 Editing an Ontology 141 Just a Bit More OWL 145 Functional and Inverse Functional Properties 146 Inverse Properties 146 Disjoint Classes 146 Keepin’ It Real 148 Some Other Ontologies 148 Describing FOAF 148 A Beer Ontology 149 This Is Not My Beautiful Relational Schema! 152 7.Publishing Semantic Data .............................................. 155 Embedding Semantics 155 Table of Contents|vii Download at Boykma.Com Microformats 156 RDFa 158 Yahoo! SearchMonkey 160 Google’s Rich Snippets 161 Dealing with Legacy Data 162 Internet Video Archive 162 Tables and Spreadsheets 167 Legacy Relational Data 169 RDFLib to Linked Data 172 Part III. Putting It into Practice 8.Overview of Toolkits ................................................... 183 Sesame 183 Using the Sesame Java API 184 RDFS Inferencing in Sesame 193 A Servlet Container for the Sesame Server 196 Installing the Sesame Web Application 196 The Workbench 197 Adding Data 199 SPARQL Queries 200 REST API 202 Other RDF Stores 203 Jena (Open Source) 204 Redland (Open Source) 204 Mulgara (Open Source) 204 OpenLink Virtuoso (Commercial and Open Source) 204 Franz AllegroGraph (Commercial) 205 Oracle (Commercial) 205 SIMILE/Exhibit 205 A Simple Exhibit Page 206 Searching, Filtering, and Prettier Views 209 Linking Up to Sesame 211 Timelines 212 9.Introspecting Objects from Data ......................................... 215 RDFObject Examples 215 RDFObject Framework 217 How RDFObject Works 225 10.Tying It All Together ................................................... 227 A Job Listing Application 227 viii|Table of Contents Download at Boykma.Com Application Requirements 228 Job Listing Data 228 Converting to RDF 228 Loading the Data into Sesame 231 Serving the Website 232 CherryPy 232 Mako Page Templates 233 A Generic Viewer 234 Getting Data from Sesame 236 The Generic Template 236 Getting Company Data 237 Crunchbase 238 Yahoo! Finance 241 Reconciling Freebase Connections 243 Specialized Views 244 Publishing for Others 248 RDFa 248 RDF/XML 250 Expanding the Data 251 Locations 251 Geography, Economy, Demography 252 Sophisticated Queries 253 Visualizing the Job Data 255 Further Expansion 258 Part IV. Epilogue 11.The Giant Global Graph ................................................ 261 Vision, Hype, and Reality 262 Participating in the Global Graph Community 264 Releasing Data into the Commons 265 License Considerations 266 The Data Cycle 267 Bracing for Continuous Change 268 Index ..................................................................... 271
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值