LeetCode——验证二叉搜索树

验证二叉搜索树

题目地址:二叉搜索树

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:
2
/
1 3
输出: true
示例 2:

输入:
5
/
1 4
/
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4

解法

对于二叉搜索树进行中序遍历,得到的数组是递增的数组,检查inorder中每个元素的大小是否小于下一个。

  • 计算中序遍历列表inorder;
  • 检查inorder中的每个元素是否小于下一个;
class Solution {
  public boolean isValidBST(TreeNode root) {
    Stack<TreeNode> stack = new Stack();
    double inorder = - Double.MAX_VALUE;

    while (!stack.isEmpty() || root != null) {
      while (root != null) {
        stack.push(root);
        root = root.left;
      }
      root = stack.pop();
      // If next element in inorder traversal
      // is smaller than the previous one
      // that's not BST.
      if (root.val <= inorder) return false;
      inorder = root.val;
      root = root.right;
    }
    return true;
  }
}

二叉树的最近公共祖先

题目地址:二叉树的最近公共祖先
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

示例 1:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。

解法

采用递归的方式,设计一个findPorQ的辅助函数,从root往下找对应的p和q,如果root=null,或者root =p或者root=q,那么root即为二者最近的公共祖先;

如果不是的话 就分别去左子树和右子树中去查找;

最后的结果就是:

  • 如果left==null,就返回right;
  • 如果right==null,就返回left;
  • 如果二者都不为空,就返回root;
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root==null||root==p||root==q) return root;
        TreeNode left = lowestCommonAncestor( root.left,  p,  q);
        TreeNode right = lowestCommonAncestor( root.right,  p, q);
        if(left == null){
            if(right==null) return null;
            else 
                return right;
        }else{
            if(right!=null)
                return root;
            else{
                return left;
            }
        }
    }
}

二叉搜索树的最近公共祖先

题目地址:二叉搜索树的最近公共祖先
题目描述:
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。

解法

对于二叉搜索树的最近公共祖先,是比二叉树要简单很多,同样是采用递归的方式,如果p和q的值都大于root的值,说明其最近公共祖先存在于右子树中;
如果p和q的值都小于root的值,说明其最近公共祖先存在于左子树中;
其它情况,如果p和q分别位于左右子树,那么root就是两者的最近公共祖先;

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {       
        if(root==null||root==p||root==q) return root;
        
        if(root.val<p.val&&root.val<q.val)
            return lowestCommonAncestor(root.right,p,q);
        else if(root.val>p.val&&root.val>q.val)
            return lowestCommonAncestor(root.left,p,q);
        else 
            return root;
    }
}
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页