LeetCode—求众数

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ghw15221836342/article/details/100110776

求众数

题目描述:

给定一个大小为 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在众数。

示例 1:

输入: [3,2,3]
输出: 3

示例 2:

输入: [2,2,1,1,1,2,2]
输出: 2

解法一:

众数是出现次数大于n/2的元素,如果对数组进行排序,直接返回位于n/2位置处的元素即为众数;

采用快速排序的时间复杂度是O(Nlog(N)),查找众数的时间复杂度是O(1),所以最终时间复杂度是O(NlogN),代码如下:

class Solution {
    public int majorityElement(int[] nums) {
        Arrays.sort(nums);
        return nums[nums.length/2];    
    }
}

解法二:

我们使用哈希表来存储每个元素,然后用一个循环在线性时间内遍历 nums ,然后我们只需要返回有最大值的键。

class Solution {
    public int majorityElement(int[] nums) {
        Map<Integer,Integer> map = countNums(nums);
        Map.Entry<Integer,Integer> majorityEntry = null;
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){
            if(majorityEntry==null||entry.getValue()>majorityEntry.getValue()){
                majorityEntry = entry;
            }
        }
        return majorityEntry.getKey();
        
    }
    private Map<Integer,Integer> countNums(int[] nums){
        Map<Integer,Integer> map = new HashMap<Integer,Integer>();
        for(int num:nums){
            if(!map.containsKey(num))
                map.put(num,1);
            else{
                map.put(num,map.get(num)+1);
            }
        }
        return map;
    }
}

解法三:

这里我们使用经典的分治算法递归求解,直到所有的子问题都是长度为 1 的数组。由于传输子数组需要额外的时间和空间,所以我们实际上只传输子区间的左右指针 lo 和 hi 表示相应区间的左右下标。长度为 1 的子数组中唯一的数显然是众数,直接返回即可。如果回溯后某区间的长度大于 1 ,我们必须将左右子区间的值合并。如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。否则,我们需要比较两个众数在整个区间内出现的次数来决定该区间的众数。原问题的答案就是下标为 00 和 nn 之间的众数这一子问题。

class Solution {
    private int countInRange(int[] nums, int num, int lo, int hi) {
        int count = 0;
        for (int i = lo; i <= hi; i++) {
            if (nums[i] == num) {
                count++;
            }
        }
        return count;
    }

    private int majorityEleme***ec(int[] nums, int lo, int hi) {
        // base case; the only element in an array of size 1 is the majority
        // element.
        if (lo == hi) {
            return nums[lo];
        }

        // recurse on left and right halves of this slice.
        int mid = (hi-lo)/2 + lo;
        int left = majorityEleme***ec(nums, lo, mid);
        int right = majorityEleme***ec(nums, mid+1, hi);

        // if the two halves agree on the majority element, return it.
        if (left == right) {
            return left;
        }

        // otherwise, count each element and return the "winner".
        int leftCount = countInRange(nums, left, lo, hi);
        int rightCount = countInRange(nums, right, lo, hi);

        return leftCount > rightCount ? left : right;
    }

    public int majorityElement(int[] nums) {
        return majorityEleme***ec(nums, 0, nums.length-1);
    }
}

 

文章创建于: 2019-08-28 22:14:12
展开阅读全文

没有更多推荐了,返回首页