MolTC 开源项目教程

MolTC 开源项目教程

MolTC 项目地址: https://gitcode.com/gh_mirrors/mo/MolTC

1. 项目介绍

MolTC(Molecular Relational Modeling in Language Models)是一个专注于分子关系建模的语言模型项目。该项目由Junfeng Fang、Shuai Zhang、Chang Wu、Zhengyi Yang、Zhiyuan Liu、Sihang Li、Kun Wang和Xiang Wang共同开发,并已被ACL2024会议接受。MolTC旨在通过语言模型来识别和建模分子间的关系,适用于药物相互作用(DDI)和溶剂化吉布斯自由能预测等任务。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了Anaconda。然后,通过以下命令创建一个新的Anaconda环境:

conda env create -f environment.yml

2.2 数据准备

下载所需的数据集和预训练模型,并将其放置在相应的文件夹中:

  • 数据集:Drugbank、ZhangDDI、ChChMiner、DeepDDI、TWOSIDES、CombiSolv-QM、CompSol、FreeSolv、Abraham、CombiSolv
  • 预训练模型:galactica-1.3b、gin_pretrained、bert_pretrained

2.3 预训练阶段

执行以下命令进行预训练:

python q-former.py
python stage2.py --root 'qformer_data/train/' --devices '4,5' --valid_root 'qformer_data/val/' --filename "stage2" --stage2_path "all_checkpoints/pretrain1/last.ckpt" --opt_model 'facebook/galactica-1.3b' --max_epochs 10 --mode pretrain --prompt '[START_I_SMILES][][END_I_SMILES]	' --tune_gnn --llm_tune freeze --inference_batch_size 2 --double True --batch_size 16

2.4 数据处理

对Drugbank、ZhangDDI、ChChMiner、DeepDDI、TWOSIDES数据集进行数据处理:

python drugbank_ddi.py
python ZhangDDI.py
python ChChMiner.py
python DeepDDI.py
python twosides.py

2.5 模型训练

执行以下命令进行模型训练:

python stage2.py --root 'data/ddi_data/drugbank/train/' --valid_root 'data/ddi_data/drugbank/valid/' --devices '2,3' --filename "ft_ddi_value_stage2_new" --stage2_path "all_checkpoints/stage2/last.ckpt" --opt_model 'facebook/galactica-1.3b' --max_epochs 100 --mode ft --prompt '[START_I_SMILES][][END_I_SMILES]	 ' --tune_gnn --llm_tune lora --inference_batch_size 4 --save_every_n_epochs 10 --batch_size 36 --DDI True --caption_eval_epoch 50 --max_len 30 --init_checkpoint "all_checkpoints/stage2/last.ckpt"

3. 应用案例和最佳实践

3.1 药物相互作用预测

MolTC在药物相互作用(DDI)预测中表现出色。通过预训练和微调,模型能够准确识别药物之间的潜在相互作用,为药物研发提供有力支持。

3.2 溶剂化吉布斯自由能预测

在溶剂化吉布斯自由能预测任务中,MolTC通过预训练模型直接预测,避免了在小数据集上的过拟合问题,提高了预测的准确性。

4. 典型生态项目

4.1 药物研发平台

MolTC可以集成到药物研发平台中,用于药物相互作用和溶剂化吉布斯自由能的预测,加速新药的研发进程。

4.2 化学信息学工具

MolTC可以作为化学信息学工具的一部分,用于分子关系建模和预测,为化学研究提供强大的计算支持。

通过以上步骤,你可以快速启动MolTC项目,并将其应用于实际的药物研发和化学研究中。

MolTC 项目地址: https://gitcode.com/gh_mirrors/mo/MolTC

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幸竹任

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值