Multiverso 开源项目教程

Multiverso 开源项目教程

Multiverso Parameter server framework for distributed machine learning 项目地址: https://gitcode.com/gh_mirrors/mu/Multiverso

1. 项目介绍

Multiverso 是一个基于参数服务器的框架,专为在大数据上训练机器学习模型而设计。它支持在多台机器上进行分布式机器学习任务。Multiverso 提供了一系列友好的编程接口,并且支持从 Python 和 Lua 程序中调用。通过这些易用的 API,机器学习研究人员和实践者无需担心系统常规问题,如分布式模型存储和操作、进程间和线程间通信、多线程管理等,而是可以专注于核心机器学习逻辑:数据、模型和训练。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统已经安装了以下依赖:

  • libopenmpi-dev
  • openmpi-bin
  • build-essential
  • cmake
  • git

2.2 安装步骤

2.2.1 Linux 系统

在 Ubuntu 14.04 或更高版本上,您可以按照以下步骤进行安装:

sudo apt-get install libopenmpi-dev openmpi-bin build-essential cmake git
git clone https://github.com/Microsoft/multiverso.git --recursive
cd multiverso
mkdir build && cd build
cmake ..
make
sudo make install
2.2.2 Windows 系统

在 Windows 系统上,您可以使用 Visual Studio 2013 打开 Multiverso.sln 文件并进行构建。

3. 应用案例和最佳实践

3.1 应用案例

Multiverso 已经被用于多个分布式机器学习项目中,例如:

  • lightLDA: 一个可扩展、快速、轻量级的系统,用于大规模主题建模。
  • distributed_word_embedding: 一个用于词嵌入的分布式系统。
  • distributed_skipgram_mixture: 一个用于多义词嵌入的分布式跳字混合系统。

3.2 最佳实践

在使用 Multiverso 时,建议遵循以下最佳实践:

  • 数据分区: 确保数据在不同节点之间均匀分布,以避免负载不均衡。
  • 模型并行化: 利用 Multiverso 的参数服务器架构,将模型参数分布在多个节点上,以加速训练过程。
  • 监控和调试: 使用 Multiverso 提供的日志和监控工具,及时发现和解决系统中的问题。

4. 典型生态项目

Multiverso 作为一个参数服务器框架,与其他分布式机器学习项目有着紧密的联系。以下是一些典型的生态项目:

  • DMTK: 微软分布式机器学习工具包,包含多个基于 Multiverso 的项目。
  • TensorFlow: 一个广泛使用的深度学习框架,可以与 Multiverso 结合使用,以实现分布式训练。
  • PyTorch: 另一个流行的深度学习框架,也可以通过 Multiverso 实现分布式训练。

通过这些生态项目,Multiverso 可以进一步扩展其功能,满足更多复杂的机器学习需求。

Multiverso Parameter server framework for distributed machine learning 项目地址: https://gitcode.com/gh_mirrors/mu/Multiverso

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/9a27693985af 《基于SSM的JSP招聘网》是一款功能丰富的在线招聘平台,主要面向普通游客、求职者、企业和管理员四种用户角色,提供了多样化的服务与管理功能。该系统采用SSM(Spring、SpringMVC、MyBatis)技术栈开发,确保了系统的稳定性与高效性。以下是对系统功能模块及其技术实现的介绍。 对于普通游客,系统提供职位浏览功能。游客可以查看平台上的各种招聘信息,如职位描述、工作职责、薪资待遇等。这需要后台数据库对招聘信息进行有效存储和检索。在SSM框架中,SpringMVC负责处理HTTP请求,将数据传递给Spring服务层进行业务逻辑处理,MyBatis作为持久层工具,执行SQL查询并将结果映射为Java对象。 求职者注册成为平台用户后,可进行职位收藏和投递。收藏的职位信息会保存在个人中心,方便随时查看。职位投递功能涉及用户个人信息与简历的提交,需要系统具备用户认证和授权机制,可通过Spring Security或Apache Shiro实现。此外,系统可能采用AJAX技术进行异步操作,如即时刷新收藏夹状态,以提升用户体验。 企业用户可在系统中发布职位、查看求职者简历。发布职位时,需进行表单验证和数据合法性检查,SpringMVC的控制器可协同前端校验库(如Hibernate Validator)完成。查看简历时,企业可对求职者进行筛选和评价,这要求数据库设计合理,以便快速查询和分析求职者信息。 管理员负责管理平台运行,包括用户管理、职位审核、系统设置等。管理员模块通常包含后台管理界面,通过SpringMVC的模型视图解析器和模板引擎(如Thymeleaf或FreeMarker)生成动态页面。同时,日志记录和异常处理必不可少,Spring框架提供了强大的日志和AOP支持,可方便实现这些功
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪澄莹George

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值