YOLOv5 Face Detection 项目安装与使用教程
yoloface Yolov5 Face Detection 项目地址: https://gitcode.com/gh_mirrors/yol/yoloface
1. 项目目录结构及介绍
yoloface/
├── models/
│ ├── __init__.py
│ └── ...
├── results/
│ └── ...
├── utils/
│ ├── __init__.py
│ └── ...
├── weights/
│ └── ...
├── LICENSE
├── README.md
├── face_detector.py
├── requirements.txt
└── ...
目录结构说明
- models/: 存放模型的定义文件。
- results/: 存放模型推理结果的文件夹。
- utils/: 存放工具函数和辅助代码的文件夹。
- weights/: 存放预训练模型权重的文件夹。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明文件。
- face_detector.py: 项目的主要启动文件,包含模型推理的代码。
- requirements.txt: 项目的依赖文件,列出了项目运行所需的Python包。
2. 项目的启动文件介绍
face_detector.py
face_detector.py 是项目的主要启动文件,负责加载模型并进行人脸检测。以下是该文件的主要功能介绍:
- 导入依赖: 文件首先导入了必要的Python库,如
numpy、PIL和torch。 - 模型加载: 通过
YoloDetector类加载预训练的 YOLOv5 模型。 - 图像处理: 支持单张图像或多张图像的输入,返回检测到的人脸边界框和关键点坐标。
- 人脸对齐: 提供了人脸对齐的功能,可以用于提高人脸识别的准确性。
使用示例
from face_detector import YoloDetector
import numpy as np
from PIL import Image
# 初始化模型
model = YoloDetector(target_size=720, device="cuda:0", min_face=90)
# 加载图像
orgimg = np.array(Image.open('test_image.jpg'))
# 进行人脸检测
bboxes, points = model.predict(orgimg)
# 进行人脸对齐
crops = model.align(orgimg, points[0])
3. 项目的配置文件介绍
requirements.txt
requirements.txt 文件列出了项目运行所需的Python包及其版本。通过以下命令可以安装这些依赖:
pip install -r requirements.txt
主要依赖包
- torch: PyTorch 深度学习框架。
- numpy: 用于数值计算的库。
- Pillow: 用于图像处理的库。
其他配置
models/目录: 包含模型的定义文件,如yolov5m.yaml。weights/目录: 存放预训练模型的权重文件,如yolov5m-face.pt。
通过以上配置,项目可以顺利加载模型并进行人脸检测。
yoloface Yolov5 Face Detection 项目地址: https://gitcode.com/gh_mirrors/yol/yoloface
5388

被折叠的 条评论
为什么被折叠?



