YOLOv5 Face Detection 项目安装与使用教程

YOLOv5 Face Detection 项目安装与使用教程

yoloface Yolov5 Face Detection yoloface 项目地址: https://gitcode.com/gh_mirrors/yol/yoloface

1. 项目目录结构及介绍

yoloface/
├── models/
│   ├── __init__.py
│   └── ...
├── results/
│   └── ...
├── utils/
│   ├── __init__.py
│   └── ...
├── weights/
│   └── ...
├── LICENSE
├── README.md
├── face_detector.py
├── requirements.txt
└── ...

目录结构说明

  • models/: 存放模型的定义文件。
  • results/: 存放模型推理结果的文件夹。
  • utils/: 存放工具函数和辅助代码的文件夹。
  • weights/: 存放预训练模型权重的文件夹。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的介绍和使用说明文件。
  • face_detector.py: 项目的主要启动文件,包含模型推理的代码。
  • requirements.txt: 项目的依赖文件,列出了项目运行所需的Python包。

2. 项目的启动文件介绍

face_detector.py

face_detector.py 是项目的主要启动文件,负责加载模型并进行人脸检测。以下是该文件的主要功能介绍:

  • 导入依赖: 文件首先导入了必要的Python库,如 numpyPILtorch
  • 模型加载: 通过 YoloDetector 类加载预训练的 YOLOv5 模型。
  • 图像处理: 支持单张图像或多张图像的输入,返回检测到的人脸边界框和关键点坐标。
  • 人脸对齐: 提供了人脸对齐的功能,可以用于提高人脸识别的准确性。

使用示例

from face_detector import YoloDetector
import numpy as np
from PIL import Image

# 初始化模型
model = YoloDetector(target_size=720, device="cuda:0", min_face=90)

# 加载图像
orgimg = np.array(Image.open('test_image.jpg'))

# 进行人脸检测
bboxes, points = model.predict(orgimg)

# 进行人脸对齐
crops = model.align(orgimg, points[0])

3. 项目的配置文件介绍

requirements.txt

requirements.txt 文件列出了项目运行所需的Python包及其版本。通过以下命令可以安装这些依赖:

pip install -r requirements.txt

主要依赖包

  • torch: PyTorch 深度学习框架。
  • numpy: 用于数值计算的库。
  • Pillow: 用于图像处理的库。

其他配置

  • models/ 目录: 包含模型的定义文件,如 yolov5m.yaml
  • weights/ 目录: 存放预训练模型的权重文件,如 yolov5m-face.pt

通过以上配置,项目可以顺利加载模型并进行人脸检测。

yoloface Yolov5 Face Detection yoloface 项目地址: https://gitcode.com/gh_mirrors/yol/yoloface

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟振优Harvester

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值